Advertisement

Identification (Characterization) and Function Studies of Matrix Protein from the Oyster Pinctada fucata

  • Rongqing Zhang
  • Liping Xie
  • Zhenguang Yan
Chapter

Abstract

Shell matrix protein (SMP) which is extracted from shell and extrapallial fluid matrix protein (EPFMP) which is extracted from extrapallial fluid have important functions in biomineralization during shell formation of Pinctada fucata. In the past decades, the functions of SMPs and EPFMPs were gradually revealed. In 2015, our group identified 72 unique SMPs in Pinctada fucata by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins extracted from the shells of P. fucata aligned with a draft genome. In this chapter, we introduced SMPs from nacreous layer (P14, N40, and PfN23), from prismatic layer (KRMP, KRMP-3, and Prisilkin-39), from both prismatic and nacreous layer (MSI7, PfN44, and PfY2), EPFMP and extracellular matrix protein expressed by mantle (EFCBP and Ferritin). For example, P14 plays a crucial role during nacre biomineralization. N40 could stimulate the nucleation of aragonite drastically by serving as a nucleation site. The basic protein PfN23 might be a key accelerator during the regulation of crystal growth in nacre. KRMP protein family plays important roles in the framework formation of prism.

The assays of functional study include RNA interference, antibody injection, notching experiment, gene expression analysis by quantitative real-time PCR, immunolocalization with gold particles, immunofluorescence in vivo and recombinant protein purification, chitin and calcium carbonate crystal binding assay, calcium carbonate precipitation assay, in vitro calcium carbonate crystallization assay, transition of ACC to stable crystals, CD spectroscopy and fluorescence quenching in vitro.

Keywords

SMPs EPFMPs Biomineralization Functional analyses 

References

  1. 1.
    K. Simkiss, K.M. Wilbur, Biomineralization (Elsevier, San Diego, 2012)Google Scholar
  2. 2.
    L. Li, C. Ortiz, Pervasive nanoscale deformation twinning as a catalyst for eficient energy dissipation in a bioceramic armour. Nat. Mater. 13, 1–7 (2014).  https://doi.org/10.1038/nmat3920 CrossRefGoogle Scholar
  3. 3.
    H. Kim et al., The role of nacreous factors in preventing osteoporotic bone loss through both osteoblast activation and osteoclast inactivation. Biomaterials 33, 7489–7496 (2012).  https://doi.org/10.1016/j.biomaterials.2012.06.098 CrossRefGoogle Scholar
  4. 4.
    G. Falini, S. Albeck, S. Weiner, L. Addadi, Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271, 67–69 (1996).  https://doi.org/10.1126/science.271.5245.67 CrossRefGoogle Scholar
  5. 5.
    H. Miyamoto et al., A carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. U. S. A. 93, 9657–9660 (1996).  https://doi.org/10.1073/pnas.93.18.9657 CrossRefGoogle Scholar
  6. 6.
    S. Sudo et al., Structures of mollusc shell framework proteins. Nature 387, 563–564 (1997).  https://doi.org/10.1038/42391 CrossRefGoogle Scholar
  7. 7.
    T. Samata et al., A new matrix protein family related to the nacreous layer formation of Pinctada fucata. FEBS Lett. 462, 225–229 (1999).  https://doi.org/10.1016/s0014-5793(99)01387-3 CrossRefGoogle Scholar
  8. 8.
    M. Suzuki et al., Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem. J. 382, 205–213 (2004).  https://doi.org/10.1042/bj20040319 CrossRefGoogle Scholar
  9. 9.
    C. Zhang, L.P. Xie, J. Huang, X.L. Liu, R.Q. Zhang, A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochem. Bioph. Res. Commun. 344, 735–740 (2006).  https://doi.org/10.1016/j.bbrc.2006.03.179 CrossRefGoogle Scholar
  10. 10.
    D. Tsukamoto, I. Sarashina, K. Endo, Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem. Bioph. Res. Commun. 320, 1175–1180 (2004).  https://doi.org/10.1016/j.bbrc.2004.06.072 CrossRefGoogle Scholar
  11. 11.
    C. Zhang, L. Xie, J. Huang, L. Chen, R. Zhang, A novel putative tyrosinase involved in periostracum formation from the pearl oyster Pinctada fucata. Biochem. Biophys. Res. Commun. 342, 632–639 (2006)CrossRefGoogle Scholar
  12. 12.
    Z. Yan et al., N40, a novel nonacidic matrix protein from pearl oyster nacre, facilitates nucleation of aragonite in vitro. Biomacromolecules 8, 3597–3601 (2007).  https://doi.org/10.1021/bm0701494 CrossRefGoogle Scholar
  13. 13.
    Y. Kong et al., Cloning and characterization of Prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. J. Biol. Chem. 284, 10841–10854 (2009).  https://doi.org/10.1074/jbc.M808357200 CrossRefGoogle Scholar
  14. 14.
    D. Fang et al., Novel basic protein, PfN23, functions as key macromolecule during nacre formation. J. Biol. Chem. 287, 15776–15785 (2012).  https://doi.org/10.1074/jbc.M112.341594 CrossRefGoogle Scholar
  15. 15.
    C. Pan et al., A novel acidic matrix protein, PfN44, stabilizes magnesium calcite to inhibit the crystallization of aragonite. J. Biol. Chem. 289, 2776–2787 (2014).  https://doi.org/10.1074/jbc.M113.504027 CrossRefGoogle Scholar
  16. 16.
    T. Takeuchi, I. Sarashina, M. Iijima, K. Endo, In vitro regulation of CaCO(3) crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS Lett. 582, 591–596 (2008).  https://doi.org/10.1016/j.febslet.2008.01.026 CrossRefGoogle Scholar
  17. 17.
    M. Yano, K. Nagai, K. Morimoto, H. Miyamoto, Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp. Biochem. Physiol. B 144, 254–262 (2006).  https://doi.org/10.1016/j.cpbp.2006.03.004 CrossRefGoogle Scholar
  18. 18.
    J. Seto et al., Nacre protein sequence compartmentalizes mineral polymorphs in solution. Cryst. Growth Des. 14, 1501–1505 (2014).  https://doi.org/10.1021/cg401421h CrossRefGoogle Scholar
  19. 19.
    H. Tohse, H. Ando, Y. Mugiya, Biochemical properties and immunohistochemical localization of carbonic anhydrase in the sacculus of the inner ear in the salmon Oncorhynchus masou. Comp. Biochem. Physiol. A. Mol. Integr. Physiol. 137, 87–94 (2004).  https://doi.org/10.1016/s1095-6433(03)00272-1 CrossRefGoogle Scholar
  20. 20.
    F. Marin, B. Pokroy, G. Luquet, P. Layrolle, K. De Groot, Protein mapping of calcium carbonate biominerals by immunogold. Biomaterials 28, 2368–2377 (2007).  https://doi.org/10.1016/j.biomaterials.2007.01.029 CrossRefGoogle Scholar
  21. 21.
    M. Suzuki et al., An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325, 1388–1390 (2009)CrossRefGoogle Scholar
  22. 22.
    H. Inoue, N. Ozaki, H. Nagasawa, Purification and structural determination of a phosphorylated peptide with anti-calcification and chitin-binding activities in the exoskeleton of the crayfish, Procambarus clarkii. Biosci. Biotechnol. Biochem. 65, 1840–1848 (2001).  https://doi.org/10.1271/bbb.65.1840 CrossRefGoogle Scholar
  23. 23.
    G.F. Xu, N. Yao, I.A. Aksay, J.T. Groves, Biomimetic synthesis of macroscopic-scale calcium carbonate thin films. Evidence for a multistep assembly process. J. Am. Chem. Soc. 120, 11977–11985 (1998).  https://doi.org/10.1021/ja9819108 CrossRefGoogle Scholar
  24. 24.
    C. Liu et al., In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci. Rep. 5, 17269 (2015).  https://doi.org/10.1038/srep17269 CrossRefGoogle Scholar
  25. 25.
    T. Takeuchi et al., Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology. DNA Res. 19, 117–130 (2012)CrossRefGoogle Scholar
  26. 26.
    S. Berland et al., Coupling proteomics and transcriptomics for the identification of novel and variant forms of mollusk shell proteins: a study with P. margaritifera. ChemBioChem 12, 950–961 (2011)CrossRefGoogle Scholar
  27. 27.
    J.L. Drake et al., Proteomic analysis of skeletal organic matrix from the stony coral Stylophora pistillata. Proc. Natl. Acad. Sci. U. S. A. 110, 3788–3793 (2013)CrossRefGoogle Scholar
  28. 28.
    J.S. Evans, Aragonite-associated biomineralization proteins are disordered and contain interactive motifs. Bioinformatics 28, 3182–3185 (2012).  https://doi.org/10.1093/bioinformatics/bts604 CrossRefGoogle Scholar
  29. 29.
    B. Marie et al., Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell. Proc. Natl. Acad. Sci. U. S. A. 109, 20986–20991 (2012)CrossRefGoogle Scholar
  30. 30.
    S.Y. Bahn, B.H. Jo, B.H. Hwang, Y.S. Choi, H.J. Cha, Role of Pif97 in nacre biomineralization: in vitro characterization of recombinant Pif97 as a framework protein for the association of organic–inorganic layers in nacre. Cryst. Growth Des. 15, 3666–3673 (2015).  https://doi.org/10.1021/acs.cgd.5b00275 CrossRefGoogle Scholar
  31. 31.
    J. Liu et al., Microarray: a global analysis of biomineralization-related gene expression profiles during larval development in the pearl oyster, Pinctada fucata. BMC Genomics 16, 325 (2015).  https://doi.org/10.1186/s12864-015-1524-2 CrossRefGoogle Scholar
  32. 32.
    A.S. Mount, A. Wheeler, R.P. Paradkar, D. Snider, Hemocyte-mediated shell mineralization in the eastern oyster. Science 304, 297–300 (2004)CrossRefGoogle Scholar
  33. 33.
    X. Wang et al., Oyster shell proteins originate from multiple organs and their probable transport pathway to the shell formation front. PLoS One 8, e66522 (2013).  https://doi.org/10.1371/journal.pone.0066522 CrossRefGoogle Scholar
  34. 34.
    S. Kinoshita et al., Deep sequencing of ESTs from nacreous and prismatic layer producing tissues and a screen for novel shell formation-related genes in the pearl oyster. PLoS One 6, e21238 (2011)CrossRefGoogle Scholar
  35. 35.
    D. Funabara et al., Novel genes participating in the formation of prismatic and nacreous layers in the pearl oyster as revealed by their tissue distribution and RNA interference knockdown. PLoS One 9, e84706 (2014).  https://doi.org/10.1371/journal.pone.0084706 CrossRefGoogle Scholar
  36. 36.
    S. Nakayama et al., Identification and characterization of a matrix protein (PPP-10) in the periostracum of the pearl oyster, Pinctada fucata. FEBS Open Bio 3, 421–427 (2013)CrossRefGoogle Scholar
  37. 37.
    H.-L. Liu et al., Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. Biochemistry 46, 844–851 (2007).  https://doi.org/10.1021/bi061881a CrossRefGoogle Scholar
  38. 38.
    F. Yan et al., Tissue inhibitor of metalloproteinase gene from pearl oyster Pinctada martensii participates in nacre formation. Biochem. Bioph. Res.Co. 450, 300–305 (2014).  https://doi.org/10.1016/j.bbrc.2014.05.118 CrossRefGoogle Scholar
  39. 39.
    M. Yano, K. Nagai, K. Morimoto, H. Miyamoto, A novel nacre protein N19 in the pearl oyster Pinctada fucata. Biochem. Bioph. Res.Co. 362, 158–163 (2007)CrossRefGoogle Scholar
  40. 40.
    B. Marie et al., Characterization of MRNP34, a novel methionine-rich nacre protein from the pearl oysters. Amino Acids 42, 2009–2017 (2012).  https://doi.org/10.1007/s00726-011-0932-0 CrossRefGoogle Scholar
  41. 41.
    D. Fang et al., Ubiquitylation functions in the calcium carbonate biomineralization in the extracellular matrix. PLoS One 7, e35715 (2012).  https://doi.org/10.1371/journal.pone.0035715 CrossRefGoogle Scholar
  42. 42.
    L. Addadi, D. Joester, F. Nudelman, S. Weiner, Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem-Eur. J. 12, 980–987 (2006).  https://doi.org/10.1002/chem.200500980 CrossRefGoogle Scholar
  43. 43.
    I. Tency et al., Imbalances between matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) in maternal serum during preterm labor. PLoS One 7, e49042 (2012)CrossRefGoogle Scholar
  44. 44.
    L. Bédouet et al., Heterogeneity of proteinase inhibitors in the water-soluble organic matrix from the oyster nacre. Mar. Biotechnol. 9, 437–449 (2007)CrossRefGoogle Scholar
  45. 45.
    G. Zhang et al., The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490, 49–54 (2012).  https://doi.org/10.1038/nature11413 CrossRefGoogle Scholar
  46. 46.
    Z. Liao et al., In-depth proteomic analysis of nacre, prism, and myostracum of Mytilus shell. J. Proteome 122, 26–40 (2015)CrossRefGoogle Scholar
  47. 47.
    B. Marie et al., Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell. Proteome Sci. 8, 54 (2010).  https://doi.org/10.1186/1477-5956-8-54 CrossRefGoogle Scholar
  48. 48.
    V.P. Hytonen, B. Wehrle-Haller, Protein conformation as a regulator of cell-matrix adhesion. Phys. Chem. Chem. Phys. 16, 6342–6357 (2014).  https://doi.org/10.1039/c3cp54884h CrossRefGoogle Scholar
  49. 49.
    P. Ramos-Silva et al., The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol. Biol. Evol. 30, 2099–2112 (2013).  https://doi.org/10.1093/molbev/mst109 CrossRefGoogle Scholar
  50. 50.
    R. Timpl et al., Structure and function of laminin LG modules. Matrix Biol. 19, 309–317 (2000).  https://doi.org/10.1016/s0945-053x(00)00072-x CrossRefGoogle Scholar
  51. 51.
    B. Marie et al., The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties. FEBS J. 280, 214–232 (2013).  https://doi.org/10.1111/febs.12062 CrossRefGoogle Scholar
  52. 52.
    C. Serra-Pages et al., The LAR transmembrane protein tyrosine phosphatase and a coiled-coil LAR-interacting protein co-localize at focal adhesions. EMBO J. 14, 2827 (1995)CrossRefGoogle Scholar
  53. 53.
    M. Humphries, Integrin structure. Biochem. Soc.Trans. 28, 311–339 (2000)CrossRefGoogle Scholar
  54. 54.
    L. Mohazab et al., Critical role for alphavbeta6 integrin in enamel biomineralization. J. Cell Sci. 126, 732–744 (2013).  https://doi.org/10.1242/jcs.112599 CrossRefGoogle Scholar
  55. 55.
    D. Norman et al., Three-dimensional structure of a complement control protein module in solution. J. Mol. Biol. 219, 717–725 (1991)CrossRefGoogle Scholar
  56. 56.
    H. Miyamoto et al., The diversity of shell matrix proteins: genome-wide investigation of the pearl oyster, Pinctada fucata. Zool. Sci. 30, 801–816 (2013)CrossRefGoogle Scholar
  57. 57.
    P. Huan, G. Liu, H. Wang, B. Liu, Identification of a tyrosinase gene potentially involved in early larval shell biogenesis of the Pacific oyster Crassostrea gigas. Dev. Genes Evol. 223, 389–394 (2013).  https://doi.org/10.1007/s00427-013-0450-z CrossRefGoogle Scholar
  58. 58.
    J. Liang et al., Dual roles of the lysine-rich matrix protein (KRMP)-3 in shell formation of pearl oyster, Pinctada fucata. PloS one 10, e0131868 (2015).  https://doi.org/10.1371/journal.pone.0131868 CrossRefGoogle Scholar
  59. 59.
    N. Nassif et al., Amorphous layer around aragonite platelets in nacre. Proc. Natl. Acad. Sci. U. S. A. 102, 12653–12655 (2005)CrossRefGoogle Scholar
  60. 60.
    B. Bayerlein et al., Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nat. Mater. 13, 1102–1107 (2014)CrossRefGoogle Scholar
  61. 61.
    M.B. Johnstone et al., Cellular orchestrated biomineralization of crystalline composites on implant surfaces by the eastern oyster, Crassostrea virginica (Gmelin, 1791). J. Exp. Mar.Biol. Ecol. 463, 8–16 (2015).  https://doi.org/10.1016/j.jembe.2014.10.014 CrossRefGoogle Scholar
  62. 62.
    L. Xiang et al., Amorphous calcium carbonate precipitation by cellular biomineralization in mantle cell cultures of Pinctada fucata. PLoS One 9, e113150 (2014).  https://doi.org/10.1371/journal.pone.0113150 CrossRefGoogle Scholar
  63. 63.
    C.M. Giachelli, S. Steitz, Osteopontin: a versatile regulator of inflammation and biomineralization. Matrix Biol. 19, 615–622 (2000)CrossRefGoogle Scholar
  64. 64.
    C. Zhang, S. Li, Z. Ma, L. Xie, R. Zhang, A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar. Biotechnol. 8, 624–633 (2006).  https://doi.org/10.1007/s10126-006-6037-1 CrossRefGoogle Scholar
  65. 65.
    A.P. Wheeler, J.W. George, C.A. Evans, Control of calcium-carbonate nucleation and crystal-growth by soluble matrix of oyster shell. Science 212, 1397–1398 (1981).  https://doi.org/10.1126/science.212.4501.1397 CrossRefGoogle Scholar
  66. 66.
    G. Fu, S. Valiyaveettil, B. Wopenka, D.E. Morse, CaCO3 biomineralization: acidic 8-kDa proteins isolated from aragonitic abalone shell nacre can specifically modify calcite crystal morphology. Biomacromolecules 6, 1289–1298 (2005).  https://doi.org/10.1021/bm049314v CrossRefGoogle Scholar
  67. 67.
    L.D. Quarles, D.A. Yohay, L.W. Lever, R. Caton, R.J. Wenstrup, Distinct proliferative and differentiated stages of murine mc3t3-e1 cells in culture – an invitro model of osteoblast development. J. Bone Miner. Res. 7, 683–692 (1992)CrossRefGoogle Scholar
  68. 68.
    J.Y. Choi et al., Expression patterns of bone-related proteins during osteoblastic differentiation in MC3T3-E1 cells. J. Cell. Biochem. 61, 609–618 (1996). https://doi.org/10.1002/(sici)1097-4644(19960616)61:4<609::aid-jcb15>3.0.co;2-a CrossRefGoogle Scholar
  69. 69.
    T. Mosmann, Rapid colorimetric assay for cellular growth and survival – application to proliferation and cyto-toxicity assays. J. Immunol. Methods 65, 55–63 (1983).  https://doi.org/10.1016/0022-1759(83)90303-4 CrossRefGoogle Scholar
  70. 70.
    D. Fang et al., Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata. PLoS One 6, e21860 (2011).  https://doi.org/10.1371/journal.pone.0021860 CrossRefGoogle Scholar
  71. 71.
    Y. Zhang et al., A novel matrix protein participating in the nacre framework formation of pearl oyster, Pinctada fucata. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 135, 565–573 (2003).  https://doi.org/10.1016/s1096-4959(03)00138-6 CrossRefGoogle Scholar
  72. 72.
    B.A. Gotliv et al., Asprich: a novel aspartic acid-rich protein family from the prismatic shell matrix of the bivalve Atrina rigida. Chembiochem 6, 304–314 (2005).  https://doi.org/10.1002/cbic.200400221 CrossRefGoogle Scholar
  73. 73.
    T. Miyashita, R. Takagi, H. Miyamoto, A. Matsushiro, Identical carbonic anhydrase contributes to nacreous or prismatic layer formation in Pinctada fucata (Mollusca : Bivalvia). Veliger 45, 250–255 (2002)Google Scholar
  74. 74.
    F. Marin et al., Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J. Biol. Chem. 280, 33895–33908 (2005).  https://doi.org/10.1074/jbc.M506526200 CrossRefGoogle Scholar
  75. 75.
    X.Y. Shen, A.M. Belcher, P.K. Hansma, G.D. Stucky, D.E. Morse, Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J. Biol. Chem. 272, 32472–32481 (1997).  https://doi.org/10.1074/jbc.272.51.32472 CrossRefGoogle Scholar
  76. 76.
    I. Sarashina, K. Endo, Primary structure of a soluble matrix protein of scallop shell: Implications for calcium carbonate biomineralization. Am. Mineral. 83, 1510–1515 (1998)CrossRefGoogle Scholar
  77. 77.
    M. Kono, N. Hayashi, T. Samata, Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem. Biophys. Res. Commun. 269, 213–218 (2000).  https://doi.org/10.1006/bbrc.2000.2274 CrossRefGoogle Scholar
  78. 78.
    F. Marin, P. Corstjens, B. de Gaulejac, E.D. Vrind-De Jong, P. Westbroek, Mucins and molluscan calcification – molecular characterization of mucoperlin, a novel mucin-like protein from the nacreous shell layer of the fan mussel Pinna nobilis (Bivalvia, Pteriomorphia). J. Biol. Chem. 275, 20667–20675 (2000).  https://doi.org/10.1074/jbc.M003006200 CrossRefGoogle Scholar
  79. 79.
    T. Miyashita et al., Complementary DNA cloning and characterization of pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar. Biotechnol. 2, 409–418 (2000)Google Scholar
  80. 80.
    K. Mann, I.M. Weiss, S. Andre, H.J. Gabius, M. Fritz, The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin – detection of a functional C-type lectin domain with galactose/mannose specificity. Eur. J. Biochem. 267, 5257–5264 (2000).  https://doi.org/10.1046/j.1432-1327.2000.01602.x CrossRefGoogle Scholar
  81. 81.
    I.M. Weiss, W. Gohring, M. Fritz, K. Mann, Perlustrin, a Haliotis laevigata (abalone) nacre protein, is homologous to the insulin-like growth factor binding protein N-terminal module of vertebrates. Biochem. Biophys. Res. Commun. 285, 244–249 (2001).  https://doi.org/10.1006/bbrc.2001.5170 CrossRefGoogle Scholar
  82. 82.
    J.C. Marxen, M. Nimtz, W. Becker, K. Mann, The major soluble 19.6 kDa protein of the organic shell matrix of the freshwater snail Biomphalaria glabrata is an N-glycosylated dermatopontin. Biochim. Biophys. Acta. Proteins Proteomics 1650, 92–98 (2003).  https://doi.org/10.1016/s1570-9639(03)00203-6 CrossRefGoogle Scholar
  83. 83.
    M. Michenfelder et al., Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers 70, 522–533 (2003).  https://doi.org/10.1002/bip.10536 CrossRefGoogle Scholar
  84. 84.
    Y. Suzuki, T. Matsuoka, Y. Iimura, H. Fujiwara, Ecdysteroid-dependent expression of a novel cuticle protein gene BMCPG1 in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 32, 599–607 (2002).  https://doi.org/10.1016/s0965-1748(01)00136-9 CrossRefGoogle Scholar
  85. 85.
    H. Zhao, C.J. Sun, R.J. Stewart, J.H. Waite, Cement proteins of the tube-building polychaete Phragmatopoma californica. J. Biol. Chem. 280, 42938–42944 (2005).  https://doi.org/10.1074/jbc.M508457200 CrossRefGoogle Scholar
  86. 86.
    M. Suzuki, H. Nagasawa, Mollusk shell structures and their formation mechanism. Can. J. Zool. Revue Canadienne De Zoologie 91, 349–366 (2013).  https://doi.org/10.1139/cjz-2012-0333 CrossRefGoogle Scholar
  87. 87.
    F. Marin, G. Luquet, Molluscan biomineralization: the proteinaceous shell constituents of Pinna nobilis L. Mater. Sci. Eng. C Biomim. Supramol. Syst. 25, 105–111 (2005).  https://doi.org/10.1016/j.msec.2005.01.003 CrossRefGoogle Scholar
  88. 88.
    M. Suzuki, S. Sakuda, H. Nagasawa, Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci. Biotechnol. Biochem. 71, 1735–1744 (2007).  https://doi.org/10.1271/bbb.70140 CrossRefGoogle Scholar
  89. 89.
    A.S. Ghatak, M. Koch, C. Guth, I.M. Weiss, Peptide induced crystallization of calcium carbonate on wrinkle patterned substrate: implications for chitin formation in molluscs. Int. J. Mol. Sci. 14, 11842–11860 (2013).  https://doi.org/10.3390/ijms140611842 CrossRefGoogle Scholar
  90. 90.
    J.E. Rebers, L.M. Riddiford, Structure and expression of a manduca-sexta larval cuticle gene homologous to drosophila cuticle genes. J. Mol. Biol. 203, 411–423 (1988).  https://doi.org/10.1016/0022-2836(88)90009-5 CrossRefGoogle Scholar
  91. 91.
    J.E. Rebers, J.H. Willis, A conserved domain in arthropod cuticular proteins binds chitin. Insect Biochem. Mol. Biol. 31, 1083–1093 (2001).  https://doi.org/10.1016/s0965-1748(01)00056-x CrossRefGoogle Scholar
  92. 92.
    A. Shechter et al., A gastrolith protein serving a dual role in the formation of an amorphous mineral containing extracellular matrix. Proc. Natl. Acad. Sci. U. S. A. 105, 7129–7134 (2008).  https://doi.org/10.1073/pnas.0800193105 CrossRefGoogle Scholar
  93. 93.
    C. McDougall, F. Aguilera, B.M. Degnan, Rapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains. J. R. Soc. Interface 10, 20130041 (2013).  https://doi.org/10.1098/rsif.2013.0041 CrossRefGoogle Scholar
  94. 94.
    J.D. Currey, The design of mineralised hard tissues for their mechanical functions. J. Exp. Biol. 202, 3285–3294 (1999)Google Scholar
  95. 95.
    M. Suzuki, H. Nagasawa, The structure-function relationship analysis of Prismalin-14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata. FEBS J. 274, 5158–5166 (2007).  https://doi.org/10.1111/j.1742-4658.2007.06036.x CrossRefGoogle Scholar
  96. 96.
    T. Takeuchi, I. Sarashina, M. Iijima, K. Endo, In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS Lett. 582, 591–596 (2008).  https://doi.org/10.1016/j.febslet.2008.01.026 CrossRefGoogle Scholar
  97. 97.
    S.V. Patwardhan, S.J. Clarson, C.C. Perry, On the role(s) of additives in bioinspired silicification. Chem. Commun. 2005, 1113–1121 (2005).  https://doi.org/10.1039/b416926c CrossRefGoogle Scholar
  98. 98.
    M. Kozak, Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome 7, 563–574 (1996).  https://doi.org/10.1007/s003359900171 CrossRefGoogle Scholar
  99. 99.
    M. Kozak, The scanning model for translation – an update. J. Cell Biol. 108, 229–241 (1989).  https://doi.org/10.1083/jcb.108.2.229 CrossRefGoogle Scholar
  100. 100.
    A. Kuboyama, K. Wada, Pi-electronic excitation energies of anthraquinone. B. Chem. Soc. Jpn. 39, 1874 (1966).  https://doi.org/10.1246/bcsj.39.1874 CrossRefGoogle Scholar
  101. 101.
    I. Sarashina, K. Endo, The complete primary structure of molluscan shell protein 1 (MSP-1), an acidic glycoprotein in the shell matrix of the scallop Patinopecten yessoensis. Mar. Biotechnol. 3, 362–369 (2001).  https://doi.org/10.1007/s10126-001-0013-6 CrossRefGoogle Scholar
  102. 102.
    Y. Hasegawa, K. Uchiyama, cDNA clonings of shell matrix proteins from scallop shell. Fish. Sci. 71, 1174–1178 (2005).  https://doi.org/10.1111/j.1444-2906.2005.01078.x CrossRefGoogle Scholar
  103. 103.
    Y. Zhang et al., A novel ferritin subunit involved in shell formation from the pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 135, 43–54 (2003).  https://doi.org/10.1016/s1096-4959(03)00050-2 CrossRefGoogle Scholar
  104. 104.
    J.E. Hansen et al., NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj. J. 15, 115–130 (1998).  https://doi.org/10.1023/A:1006960004440 CrossRefGoogle Scholar
  105. 105.
    N. Blom, S. Gammeltoft, S. Brunak, Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 (1999).  https://doi.org/10.1006/jmbi.1999.3310 CrossRefGoogle Scholar
  106. 106.
    S.F. Altschul et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).  https://doi.org/10.1093/nar/25.17.3389 CrossRefGoogle Scholar
  107. 107.
    N. Suzuki et al., Trophinin expression in the mouse uterus coincides with implantation and is hormonally regulated but not induced by implanting blastocysts. Endocrinology 141, 4247–4254 (2000).  https://doi.org/10.1210/en.141.11.4247 CrossRefGoogle Scholar
  108. 108.
    S. Weiner, W. Traub, Macromolecules in mollusk shells and their functions in biomineralization. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 304, 425 (1984).  https://doi.org/10.1098/rstb.1984.0036 CrossRefGoogle Scholar
  109. 109.
    Y. Levi-Kalisman, G. Falini, L. Addadi, S. Weiner, Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM. J. Struct. Biol. 135, 8–17 (2001).  https://doi.org/10.1006/jsbi.2001.4372 CrossRefGoogle Scholar
  110. 110.
    Y. Dauphin, Soluble organic matrices of the calcitic prismatic shell layers of two pteriomorphid bivalves – Pinna nobilis and Pinctada margaritifera. J. Biol. Chem. 278, 15168–15177 (2003).  https://doi.org/10.1074/jbc.M204375200 CrossRefGoogle Scholar
  111. 111.
    R. Lakshminarayanan, S. Valiyaveettil, V.S. Rao, R.M. Kini, Purification, characterization, and in vitro mineralization studies of a novel goose eggshell matrix protein, ansocalcin. J. Biol. Chem. 278, 2928–2936 (2003).  https://doi.org/10.1074/jbc.M201518200 CrossRefGoogle Scholar
  112. 112.
    F. Marin, G. Luquet, Molluscan shell proteins. Comptes Rendus Palevol 3, 469–492 (2004).  https://doi.org/10.1016/j.crpv.2004.07.009 CrossRefGoogle Scholar
  113. 113.
    S. Li et al., Cloning and expression of a pivotal calcium metabolism regulator: calmodulin involved in shell formation from pearl oyster (Pinctada fucata). Comp. Biochem. Physiol. B 138, 235–243 (2004).  https://doi.org/10.1016/j.cbpc.2004.03.012 CrossRefGoogle Scholar
  114. 114.
    K. Nagai, M. Yano, K. Morimoto, H. Miyamoto, Tyrosinase localization in mollusc shells. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 146, 207–214 (2007).  https://doi.org/10.1016/j.cbpb.2006.10.105 CrossRefGoogle Scholar
  115. 115.
    L.M. Faircloth, T.H. Shafer, Differential expression of eight transcripts and their roles in the cuticle of the blue crab, Callinectes sapidus. Comp. Biochem. Physiol. B 146, 370–383 (2007).  https://doi.org/10.1016/j.cbpb.2006.11.008 CrossRefGoogle Scholar
  116. 116.
    S.O. Andersen, Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem. Mol. Biol. 30, 569–577 (2000).  https://doi.org/10.1016/s0965-1748(00)00029-1 CrossRefGoogle Scholar
  117. 117.
    S.O. Andersen, Characterization of proteins from arthrodial membranes of the lobster, Homarus americanus. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 121, 375–383 (1998).  https://doi.org/10.1016/s1095-6433(98)10146-0 CrossRefGoogle Scholar
  118. 118.
    L. Addadi, S. Weiner, Biomineralization – crystals, asymmetry and life. Nature 411, 753–755 (2001).  https://doi.org/10.1038/35081227 CrossRefGoogle Scholar
  119. 119.
    F. Marin, G. Luquet, B. Marie, D. Medakovic, Molluscan shell proteins: primary structure, origin, and evolution. Curr. Top. Dev. Biol. 80, 209–276 (2008).  https://doi.org/10.1016/S0070-2153(07)80006-8 CrossRefGoogle Scholar
  120. 120.
    P.M. Steinert et al., Amino-acid sequences of mouse and human epidermal type-II keratins of Mr 67,000 provide a systematic basis for the structural and functional diversity of the end domains of keratin intermediate filament subunits. J. Biol. Chem. 260, 7142–7149 (1985)Google Scholar
  121. 121.
    C.M. Condit, R.B. Meagher, A gene encoding a novel glycine-rich structural protein of petunia. Nature 323, 178–181 (1986).  https://doi.org/10.1038/323178a0 CrossRefGoogle Scholar
  122. 122.
    D. Hohl et al., Characterization of human loricrin – structure and function of a new class of epidermal-cell envelope proteins. J. Biol. Chem. 266, 6626–6636 (1991)Google Scholar
  123. 123.
    I.M. Weiss, S. Kaufmann, K. Mann, M. Fritz, Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. Biochem. Biophys. Res. Commun. 267, 17–21 (2000).  https://doi.org/10.1006/bbrc.1999.1907 CrossRefGoogle Scholar
  124. 124.
    Marin, F., Luquet, G., Marie, B., Medakovic, D.: Molluscan shell proteins: primary structure, origin, and evolution. In: Schatten, G. P. (ed.) Current Topics in Developmental Biology, vol. 80, pp 209-276. Elsevier Academic Press Inc Cambridge, MA (2008)CrossRefGoogle Scholar
  125. 125.
    K.M. Wilbur, A.M. Bernhardt, Effects of amino-acids, magnesium, and molluscan extrapallial fluid on crystallization of calcium-carbonate – invitro experiments. Biol. Bull. 166, 251–259 (1984).  https://doi.org/10.2307/1541446 CrossRefGoogle Scholar
  126. 126.
    S. Weiner, I. Sagi, L. Addadi, Choosing the crystallization path less traveled. Science 309, 1027–1028 (2005).  https://doi.org/10.1126/science.1114920 CrossRefGoogle Scholar
  127. 127.
    Y. Yan et al., A novel matrix protein, PfY2, functions as a crucial macromolecule during shell formation. Sci. Rep. 7, 6021 (2017).  https://doi.org/10.1038/s41598-017-06375-w CrossRefGoogle Scholar
  128. 128.
    D.J. Jackson et al., A rapidly evolving secretome builds and patterns a sea shell. BMC Biol. 4, 40 (2006).  https://doi.org/10.1186/1741-7007-4-40 CrossRefGoogle Scholar
  129. 129.
    L. Xiang et al., Patterns of expression in the matrix proteins responsible for nucleation and growth of aragonite crystals in flat pearls of Pinctada fucata. PLoS One 8, e66564 (2013).  https://doi.org/10.1371/journal.pone.0066564 CrossRefGoogle Scholar
  130. 130.
    B. Farre, Y. Dauphin, Lipids from the nacreous and prismatic layers of two Pteriomorpha mollusc shells. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 152, 103–109 (2009).  https://doi.org/10.1016/j.cbpb.2008.10.003 CrossRefGoogle Scholar
  131. 131.
    Y. Politi, T. Arad, E. Klein, S. Weiner, L. Addadi, Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306, 1161–1164 (2004).  https://doi.org/10.1126/science.1102289 CrossRefGoogle Scholar
  132. 132.
    F. Meldrum, Calcium carbonate in biomineralisation and biomimetic chemistry. Int. Mater. Rev. 48, 187–224 (2003)CrossRefGoogle Scholar
  133. 133.
    J. Aizenberg, G. Lambert, L. Addadi, S. Weiner, Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv. Mater. 8, 222 (1996).  https://doi.org/10.1002/adma.19960080307 CrossRefGoogle Scholar
  134. 134.
    B.H. Wilkinson, Biomineralization, paleoceanography, and the evolution of calcareous marine organisms. Geology 7, 524–527 (1979)CrossRefGoogle Scholar
  135. 135.
    S. Weiner, Biomineralization: a structural perspective. J. Struct. Biol. 163, 229–234 (2008).  https://doi.org/10.1016/j.jsb.2008.02.001 CrossRefGoogle Scholar
  136. 136.
    J.T. Su et al., Transformation of amorphous calcium carbonate nanoparticles into aragonite controlled by ACCBP. CrystEngComm 18, 2125–2134 (2016).  https://doi.org/10.1039/c5ce02288f CrossRefGoogle Scholar
  137. 137.
    Q. Feng et al., Crystallographic alignment of calcite prisms in the oblique prismatic layer of Mytilus edulis shell. J. Mater. Sci. 35, 3337–3340 (2000)CrossRefGoogle Scholar
  138. 138.
    J. Xie et al., Influence of the extrapallial fluid of Pinctada fucata on the crystallization of calcium carbonate and shell biomineralization. Cryst. Growth Des. 16, 672–680 (2016).  https://doi.org/10.1021/acs.cgd.5b01203 CrossRefGoogle Scholar
  139. 139.
    L. Qiao, Q.-L. Feng, Z. Li, Special vaterite found in freshwater lackluster pearls. Cryst. Growth Des. 7, 275–279 (2007)CrossRefGoogle Scholar
  140. 140.
    N. Spann, E.M. Harper, D.C. Aldridge, The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften 97, 743–751 (2010)CrossRefGoogle Scholar
  141. 141.
    B.A. Wustman, D.E. Morse, J.S. Evans, Structural characterization of the N-terminal mineral modification domains from the molluscan crystal-modulating biomineralization proteins, AP7 and AP24. Biopolymers 74, 363–376 (2004).  https://doi.org/10.1002/bip.20086 CrossRefGoogle Scholar
  142. 142.
    H. Tong et al., Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Biomaterials 25, 3923–3929 (2004).  https://doi.org/10.1016/j.biomaterials.2003.10.038 CrossRefGoogle Scholar
  143. 143.
    V. Gerbaud et al., Mechanism of calcite crystal growth inhibition by the N-terminal undecapeptide of lithostathine. J. Biol. Chem. 275, 1057–1064 (2000)CrossRefGoogle Scholar
  144. 144.
    Z. Ma et al., A novel extrapallial fluid protein controls the morphology of nacre lamellae in the pearl oyster, Pinctada fucata. J. Biol. Chem. 282, 23253–23263 (2007).  https://doi.org/10.1074/jbc.M700001200 CrossRefGoogle Scholar
  145. 145.
    T. Ogino, T. Suzuki, K. Sawada, The formation and transformation mechanism of calcium-carbonate in water. Geochim. Cosmochim. Acta 51, 2757–2767 (1987).  https://doi.org/10.1016/0016-7037(87)90155-4 CrossRefGoogle Scholar
  146. 146.
    J.R. Clarkson, T.J. Price, C.J. Adams, Role of metastable phases in the spontaneous precipitation of calcium-carbonate. J. Chem. Soc. Faraday Trans. 88, 243–249 (1992).  https://doi.org/10.1039/ft9928800243 CrossRefGoogle Scholar
  147. 147.
    P.J. Corringer, N. Le Novere, J.P. Changeux, Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40, 431–458 (2000).  https://doi.org/10.1146/annurev.pharmtox.40.1.431 CrossRefGoogle Scholar
  148. 148.
    A.B. Smit et al., A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 411, 261–268 (2001).  https://doi.org/10.1038/35077000 CrossRefGoogle Scholar
  149. 149.
    S.B. Hansen, T.T. Talley, Z. Radic, P. Taylor, Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia californica. J. Biol. Chem. 279, 24197–24202 (2004).  https://doi.org/10.1074/jbc.M402452200 CrossRefGoogle Scholar
  150. 150.
    N. Koga, Y.Z. Nakagoe, H. Tanaka, Crystallization of amorphous calcium carbonate. Thermochim. Acta 318, 239–244 (1998).  https://doi.org/10.1016/s0040-6031(98)00348-7 CrossRefGoogle Scholar
  151. 151.
    J. Rieger, J. Thieme, C. Schmidt, Study of precipitation reactions by X-ray microscopy: CaCO3 precipitation and the effect of polycarboxylates. Langmuir 16, 8300–8305 (2000).  https://doi.org/10.1021/la0004193 CrossRefGoogle Scholar
  152. 152.
    A. OrrUrtreger et al., Mice deficient in the alpha 7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents. J. Neurosci. 17, 9165–9171 (1997)CrossRefGoogle Scholar
  153. 153.
    J. Su et al., Structural characterization of amorphous calcium carbonate-binding protein: an insight into the mechanism of amorphous calcium carbonate formation (vol 453, pg 179, 2013). Biochem. J. 454, 167–167 (2013)CrossRefGoogle Scholar
  154. 154.
    E.F. Pettersen et al., UCSF chimera – a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).  https://doi.org/10.1002/jcc.20084 CrossRefGoogle Scholar
  155. 155.
    F.F. Amos, M. Ndao, J.S. Evans, Evidence of mineralization activity and supramolecular assembly by the N-terminal sequence of ACCBP, a biomineralization protein that is homologous to the acetylcholine binding protein family. Biomacromolecules 10, 3298–3305 (2009).  https://doi.org/10.1021/bm900893f CrossRefGoogle Scholar
  156. 156.
    L.J. McGuffin, K. Bryson, D.T. Jones, The PSIPRED protein structure prediction server. Bioinformatics (Oxford) 16, 404–405 (2000)CrossRefGoogle Scholar
  157. 157.
    Y.K. Reshetnyak, E.A. Burstein, Decomposition of protein tryptophan fluorescence spectra into log-normal components. II. The statistical proof of discreteness of tryptophan classes in proteins. Biophys. J. 81, 1710–1734 (2001)CrossRefGoogle Scholar
  158. 158.
    J.T. Han, X.R. Xu, D.H. Kim, K.W. Cho, Biomimetic fabrication of vaterite film from amorphous calcium carbonate on polymer melt: effect of polymer chain mobility and functionality. Chem. Mater. 17, 136–141 (2005).  https://doi.org/10.1021/048892f CrossRefGoogle Scholar
  159. 159.
    J. Xiao, Z. Wang, Y. Tang, S. Yang, Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite. Langmuir 26, 4977–4983 (2010).  https://doi.org/10.1021/la903641k CrossRefGoogle Scholar
  160. 160.
    L. Addadi, J. Moradian, E. Shay, N.G. Maroudas, S.A. Weiner, Chemical-model for the cooperation of sulfates and carboxylates in calcite crystal nucleation – relevance to biomineralization. Proc. Natl. Acad. Sci. U. S. A. 84, 2732–2736 (1987).  https://doi.org/10.1073/pnas.84.9.2732 CrossRefGoogle Scholar
  161. 161.
    L. Addadi, S. Weiner, M. Geva, On how proteins interact with crystals and their effect on crystal formation. Zeitschrift fur Kardiologie 90(Suppl 3), 92–98 (2001)Google Scholar
  162. 162.
    Y. Levi-Kalisman, S. Raz, S. Weiner, L. Addadi, I. Sagi, Structural differences between biogenic amorphous calcium carbonate phases using X-ray absorption spectroscopy. Adv. Funct. Mater. 12, 43–48 (2002). https://doi.org/10.1002/1616-3028(20020101)12:1<43::aid-adfm43>3.0.co;2-c CrossRefGoogle Scholar
  163. 163.
    Y. Politi et al., Structural characterization of the transient amorphous calcium carbonate precursor phase in sea urchin embryos. Adv. Funct. Mater. 16, 1289–1298 (2006).  https://doi.org/10.1002/adfm.200600134 CrossRefGoogle Scholar
  164. 164.
    J.H.E. Cartwright, A.G. Checa, J.D. Gale, D. Gebauer, C.I. Sainz-Diaz, Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there? Angew. Chem. Int. Ed. 51, 11960–11970 (2012).  https://doi.org/10.1002/anie.201203125 CrossRefGoogle Scholar
  165. 165.
    L.B. Gower, Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem. Rev. 108, 4551–4627 (2008).  https://doi.org/10.1021/cr800443h CrossRefGoogle Scholar
  166. 166.
    M.A. Bewernitz, D. Gebauer, J. Long, H. Coelfen, L.B. Gower, A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss. 159, 291–312 (2012).  https://doi.org/10.1039/c2fd20080e CrossRefGoogle Scholar
  167. 167.
    S.E. Wolf et al., Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of ‘polymer-induced liquid precursor’ processes. J. Am. Chem. Soc. 133, 12642–12649 (2011).  https://doi.org/10.1021/ja202622g CrossRefGoogle Scholar
  168. 168.
    V. Pipich, M. Balz, S.E. Wolf, W. Tremel, D. Schwahn, Nucleation and growth of CaCO(3) mediated by the egg-white protein ovalbumin: a time-resolved in situ study using small-angle neutron scattering. J. Am. Chem. Soc. 130, 6879–6892 (2008).  https://doi.org/10.1021/ja801798h CrossRefGoogle Scholar
  169. 169.
    X. Wang et al., Influence of ovalbumin on CaCO3 precipitation during in vitro biomineralization. J. Phys. Chem. B 114, 5301–5308 (2010).  https://doi.org/10.1021/jp1008237 CrossRefGoogle Scholar
  170. 170.
    Y. Politi, J. Mahamid, H. Goldberg, S. Weiner, L. Addadi, Asprich mollusk shell protein: in vitro experiments aimed at elucidating function in CaCO3 crystallization. CrystEngComm 9, 1171–1177 (2007).  https://doi.org/10.1039/b709749b CrossRefGoogle Scholar
  171. 171.
    E.M. Pouget et al., The initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM. Science 323, 1455–1458 (2009).  https://doi.org/10.1126/science.1169434 CrossRefGoogle Scholar
  172. 172.
    X. Liu et al., The role of matrix proteins in the control of nacreous layer deposition during pearl formation. Proc. R. Soc. Lond. B Biol. Sci. 279, 1000–1007 (2012)CrossRefGoogle Scholar
  173. 173.
    S. Weiner, P.M. Dove, An overview of biomineralization processes and the problem of the vital effect. Rev. Mineral. Geochem. 54, 1–29 (2003)CrossRefGoogle Scholar
  174. 174.
    J. Huang, C. Zhang, Z. Ma, L. Xie, R. Zhang, A novel extracellular EF-hand protein involved in the shell fonnation of pearl oyster. Biochim. Biophys. Acta. Gen. Subj. 1770, 1037–1044 (2007).  https://doi.org/10.1016/j.bbagen.2007.03.006 CrossRefGoogle Scholar
  175. 175.
    A. Lewit-Bentley, S. Rety, EF-hand calcium-binding proteins. Curr. Opin. Struct. Biol. 10, 637–643 (2000).  https://doi.org/10.1016/s0959-440x(00)00142-1 CrossRefGoogle Scholar
  176. 176.
    P.M. Harrison, P. Arosio, Ferritins: molecular properties, iron storage function and cellular regulation. BBA-Bioenergetics 1275, 161–203 (1996).  https://doi.org/10.1016/0005-2728(96)00022-9 CrossRefGoogle Scholar
  177. 177.
    M. Vondarl, P.M. Harrison, W. Bottke, cDNA cloning and deduced amino-acid-sequence of 2 ferritins – soma ferritin and yolk ferritin, from the snail Lymnaea-stagnalis L. Eur. J. Biochem. 222, 353–366 (1994)CrossRefGoogle Scholar
  178. 178.
    T.S. Huang, J.H. Law, K. Soderhall, Purification and cDNA cloning of ferritin from the hepatopancreas of the freshwater crayfish Pacifastacus leniusculus. Eur. J. Biochem. 236, 450–456 (1996).  https://doi.org/10.1111/j.1432-1033.1996.00450.x CrossRefGoogle Scholar
  179. 179.
    G. Beck, T.W. Ellis, G.S. Habicht, S.F. Schluter, J.J. Marchalonis, Evolution of the acute phase response: iron release by echinoderm (Asterias forbesi) coelomocytes, and cloning of an echinoderm ferritin molecule. Dev. Comp. Immunol. 26, 11–26 (2002).  https://doi.org/10.1016/s0145-305x(01)00051-9 CrossRefGoogle Scholar
  180. 180.
    G.S. Waldo, J.S. Ling, J. Sandersloehr, E.C. Theil, Formation of an Fe(III)-tyrosinate complex during biomineralization of H-subunit ferritin. Science 259, 796–798 (1993).  https://doi.org/10.1126/science.8430332 CrossRefGoogle Scholar
  181. 181.
    M. Pekkarinen, I. Valovirta, Histochemical and X-ray studies on tissue concretions and shells of Margaritifera margaritifera (Linnaeus). J. Shellfish Res. 16, 169–177 (1997)Google Scholar
  182. 182.
    B.A. Fowler, D.A. Wolfe, W.F. Hettler, Mercury and iron uptake by cytosomes in mantle epithelial-cells of quahog clams (Mercenaria-mercenaria) exposed to mercury. J. Fish. Res. Board Can. 32, 1767–1775 (1975)CrossRefGoogle Scholar
  183. 183.
    J.D. Thomson, B.J.S. Pirie, S.G. George, Cellular metal distribution in the pacific oyster, crassostrea-gigas (thun) determined by quantitative x-ray microprobe analysis. J. Exp. Mar. Biol. Ecol. 85, 37–45 (1985).  https://doi.org/10.1016/0022-0981(85)90012-7 CrossRefGoogle Scholar
  184. 184.
    T.G. Stpierre, K.S. Kim, J. Webb, S. Mann, D.P.E. Dickson, Biomineralization of iron – Mossbauer-spectroscopy and electron-microscopy of ferritin cores from the chiton acanthopleura-hirtosa and the limpet Patella-laticostata. Inorg. Chem. 29, 1870–1874 (1990).  https://doi.org/10.1021/ic00335a022 CrossRefGoogle Scholar
  185. 185.
    N.D. Chasteen, P.M. Harrison, Mineralization in ferritin: an efficient means of iron storage. J. Struct. Biol. 126, 182–194 (1999)CrossRefGoogle Scholar
  186. 186.
    K.S. Kim, J. Webb, D.J. Macey, Properties and role of ferritin in the hemolymph of the chiton clavarizona-hirtosa. Biochim. Biophys. Acta 884, 387–394 (1986)CrossRefGoogle Scholar
  187. 187.
    T. Sumitomo, H. Kakisawa, Y. Owaki, Y. Kagawa, In situ transmission electron microscopy observation of reversible deformation in nacre organic matrix. J. Mater. Res. 23, 1466–1471 (2008).  https://doi.org/10.1557/jmr.2008.0184 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rongqing Zhang
    • 1
  • Liping Xie
    • 1
  • Zhenguang Yan
    • 2
  1. 1.School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.Chinese Research Academy of Environmental SciencesBeijingChina

Personalised recommendations