Molecular Basis of Biomineralization in Pinctada fucata

  • Rongqing Zhang
  • Liping Xie
  • Zhenguang Yan


Biomineralization is the accumulation and formation of minerals regulated by living organisms transforming into biological structures and tissues. This is an extremely widespread phenomenon since we’ve found many creatures in all six taxonomic kingdoms which could form biominerals, and more than 60 different types of them have been identified, such as silicates in diatoms and algae, carbonates in invertebrates, and carbonates and calcium phosphates in vertebrates. These minerals often form structures like sea shells and the bone in mammals and birds.

The study of biomineralization started at the first half of the twentieth century by the extensive use of optical microscopy, which helped a lot to identify various types and patterns of structures. It was not until the 1960s and 1970s, with the application of transmission electron microscopy (TEM), the scanning electron microscopy (SEM), radioisotope, the biochemical research on membrane transport, the analysis of bone-related organic materials, and the understanding of the ultrastructure of mineralized materials, was the initial idea of the biomineralization formed. Though some progress has been made in revealing the principles of these processes during the past few decades, there are still a lot of unknowns waiting for more exploration. The main content in this book primarily focused on the following aspects: the identification and function characterization of biomineralization-related genes, including those that encode shell matrix proteins and enzymes and participate in calcium metabolism; the cellular regulation such as cell signaling pathways during biomineralization process; and the ecological studies on biomineralization in Pinctada fucata.


Pinctada fucata Biomineralization Molecular basis Introduction Calcium metabolism 


  1. 1.
    S. Weiner, P.M. Dove, An overview of biomineralization processes and the problem of the vital effect. Rev. Mineral. Geochem. 54, 1–29 (2003). CrossRefGoogle Scholar
  2. 2.
    L. Addadi, D. Joester, F. Nudelman, S. Weiner, Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry (Weinheim an der Bergstrasse, Germany) 12, 980–987 (2006). CrossRefGoogle Scholar
  3. 3.
    A. Alivisatos, P. Biomineralization, Naturally aligned nanocrystals. Science 289, 736–737 (2000)CrossRefGoogle Scholar
  4. 4.
    H.A. Lowenstam, Minerals formed by organisms. Science 211, 1126–1131 (1981)CrossRefGoogle Scholar
  5. 5.
    M. Cusack, A. Freer, Biomineralization: Elemental and organic influence in carbonate systems. Chem. Rev. 108, 4433–4454 (2008). CrossRefGoogle Scholar
  6. 6.
    S. Mann, On the nature of boundary-organized biomineralization (BOB). J. Inorg. Biochem. 28, 363–371 (1986)CrossRefGoogle Scholar
  7. 7.
    S. Mann, S. Weiner, Biomineralization: Structural questions at all length scales. J. Struct. Biol. 126, 179–181 (1999). CrossRefGoogle Scholar
  8. 8.
    A. Veis, Biomineralization – Cell biology and mineral deposition – Simkiss,K, Wilbur,Km. Science 247, 1129–1130 (1990). CrossRefGoogle Scholar
  9. 9.
    N.H. de Leeuw, S.C. Parker, Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: An atomistic approach. J. Phys. Chem. B 102, 2914–2922 (1998). CrossRefGoogle Scholar
  10. 10.
    L. Qiao, Q.L. Feng, Z. Li, Special vaterite found in freshwater lackluster pearls. Cryst. Growth Des. 7, 275–279 (2007). CrossRefGoogle Scholar
  11. 11.
    N. Spann, E.M. Harper, D.C. Aldridge, The unusual mineral vaterite in shells of the freshwater bivalve Corbicula fluminea from the UK. Naturwissenschaften 97, 743–751 (2010). CrossRefGoogle Scholar
  12. 12.
    J. Aizenberg, G. Lambert, L. Addadi, S. Weiner, Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv. Mater 8, 222–225 (1996). CrossRefGoogle Scholar
  13. 13.
    J.T. Su et al., Structural characterization of amorphous calcium carbonate-binding protein: An insight into the mechanism of amorphous calcium carbonate formation. Biochem. J. 453, 179–186 (2013). CrossRefGoogle Scholar
  14. 14.
    Y. Yan et al., A novel matrix protein, PfY2, functions as a crucial macromolecule during Shell formation. Sci. Rep. 7, 6021 (2017). CrossRefGoogle Scholar
  15. 15.
    D. Fang et al., Novel basic protein, PfN23, functions as key macromolecule during nacre formation. J. Biol. Chem. 287, 15776–15785 (2012). CrossRefGoogle Scholar
  16. 16.
    J.D. Taylor, W.J. Kennedy, The influence of the periostracum on the shell structure of bivalve molluscs. Calcif. Tissue Res. 3, 274–283 (1969)CrossRefGoogle Scholar
  17. 17.
    F. Marin, G. Luquet, B. Marie, D. Medakovic, Molluscan shell proteins: primary structure, origin, and evolution. Curr. Top. Dev. Biol. 80, 209–276 (2008). CrossRefGoogle Scholar
  18. 18.
    A. Checa, A new model for periostracum and shell formation in Unionidae (Bivalvia, Mollusca). Tissue Cell 32, 405–416 (2000). CrossRefGoogle Scholar
  19. 19.
    H. Petit, W.L. Davis, R.G. Jones, H.K. Hagler, Morphological studies on the calcification process in the fresh-water mussel Amblema. Tissue Cell 12, 13–28 (1980)CrossRefGoogle Scholar
  20. 20.
    L. Addadi, S. Weiner, Biomineralization: a pavement of pearl. Nature 389, 912–915 (1997)CrossRefGoogle Scholar
  21. 21.
    C. Liu et al., In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci. Rep. 5, 17269 (2015). CrossRefGoogle Scholar
  22. 22.
    J. Xie et al., Influence of the Extrapallial fluid of Pinctada fucata on the crystallization of calcium carbonate and shell biomineralization. Cryst. Growth Des. 16, 672–680 (2016). CrossRefGoogle Scholar
  23. 23.
    K. Saruwatari, T. Matsui, H. Mukai, H. Nagasawa, T. Kogure, Nucleation and growth of aragonite crystals at the growth front of nacres in pearl oyster, Pinctada fucata. Biomaterials 30, 3028–3034 (2009). CrossRefGoogle Scholar
  24. 24.
    H. Nakahara, G. Bevelander, The formation and growth of the prismatic layer of Pinctada radiata. Calcif. Tissue Res. 7, 31–45 (1971)CrossRefGoogle Scholar
  25. 25.
    H. Tong et al., In situ analysis of the organic framework in the prismatic layer of mollusc shell. Biomaterials 23, 2593–2598 (2002)CrossRefGoogle Scholar
  26. 26.
    F. Marin, B. Pokroy, G. Luquet, P. Layrolle, K. De Groot, Protein mapping of calcium carbonate biominerals by immunogold. Biomaterials 28, 2368–2377 (2007). CrossRefGoogle Scholar
  27. 27.
    M. Suzuki, H. Nagasawa, The structure-function relationship analysis of Prismalin-14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata. FEBS J. 274, 5158–5166 (2007). CrossRefGoogle Scholar
  28. 28.
    T. Okumura, M. Suzuki, H. Nagasawa, T. Kogure, Characteristics of biogenic calcite in the prismatic layer of a pearl oyster, Pinctada fucata. Micron 41, 821–826 (2010). CrossRefGoogle Scholar
  29. 29.
    C. Gregoire, Topography of the Organic Components in Mother-of-Pearl. J. Biophys. Biochem. Cytol. 3, 797–808 (1957). CrossRefGoogle Scholar
  30. 30.
    K. Oaki, H. Imai, The hierarchical architecture of nacre and its mimetic material. Angew. Chem. Int. Ed. 44, 6571–6575 (2005). CrossRefGoogle Scholar
  31. 31.
    N.P. Gong et al., Immunolocalization of matrix proteins in nacre lamellae and their in vivo effects on aragonitic tablet growth. J. Struct. Biol. 164, 33–40 (2008). CrossRefGoogle Scholar
  32. 32.
    F. Nudelman, B.A. Gotliv, L. Addadi, S. Weiner, Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. J. Struct. Biol. 153, 176–187 (2006). CrossRefGoogle Scholar
  33. 33.
    Y. Levi-Kalisman, G. Falini, L. Addadi, S. Weiner, Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J. Struct. Biol. 135, 8–17 (2001). CrossRefGoogle Scholar
  34. 34.
    R.A. Rose, S.B. Baker, Larval and spat culture of the Western-Australian Silverlip or Goldlip pearl oyster, Pinctada-Maxima Jameson (Mollusca, Pteriidae). Aquaculture 126, 35–50 (1994). CrossRefGoogle Scholar
  35. 35.
    D. Fang et al., Identification of Genes Directly Involved in Shell Formation and Their Functions in Pearl Oyster, Pinctada fucata. Plos One 6., ARTN e218601371/journal.pone.0021860 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Liu et al., Microarray: a global analysis of biomineralization-related gene expression profiles during larval development in the pearl oyster, Pinctada fucata. BMC Genomics 16, 325 (2015). CrossRefGoogle Scholar
  37. 37.
    P.S. Nair, W.E. Robinson, Calcium speciation and exchange between blood and extrapallial fluid of the quahog Mercenaria mercenaria (L.). Biol. Bull. 195, 43–51 (1998). CrossRefGoogle Scholar
  38. 38.
    H. Miyamoto, F. Miyoshi, J. Kohno, The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusc Pinctada fucata. Zool. Sci. 22, 311–315 (2005). CrossRefGoogle Scholar
  39. 39.
    I.M. Sokolova, Apoptosis in molluscan immune defense. Isj-Invertebr. Surv. J. 6, 49–58 (2009)Google Scholar
  40. 40.
    A. Serpentini et al., Collagen study and regulation of the de novo synthesis by IGF-I in hemocytes from the gastropod mollusc, Haliotis tuberculata. J. Exp. Zool. 287, 275–284 (2000).<275::Aid-Jez2>3.0.Co;2-8 CrossRefGoogle Scholar
  41. 41.
    A.S. Mount, A.P. Wheeler, R.P. Paradkar, D. Snider, Hemocyte-mediated shell mineralization in the eastern oyster. Science 304, 297–300 (2004). CrossRefGoogle Scholar
  42. 42.
    A.P. Wheeler, C.S. Sikes, K.W. Rusenko, J.E. Borbas, The role of structural features of oyster Shell organic matrix in biomineralization. Am. Zool. 27, A52–A52 (1987)Google Scholar
  43. 43.
    A.P. Wheeler, C.S. Sikes, Regulation of carbonate calcification by organic matrix. Am. Zool. 24, 933–944 (1984)CrossRefGoogle Scholar
  44. 44.
    C.S. Sikes, A.P. Wheeler, The organic matrix from oyster Shell as a regulator of calcification Invivo. Biol. Bull. 170, 494–505 (1986). CrossRefGoogle Scholar
  45. 45.
    M.A. Cariolou, D.E. Morse, Purification and Characterization of Calcium-Binding Conchiolin Shell Peptides from the Mollusk, Haliotis-Rufescens, as a Function of Development. J. Comp. Physiol. B. 157, 717–729 (1988). CrossRefGoogle Scholar
  46. 46.
    X.Y. Shen, A.M. Belcher, P.K. Hansma, G.D. Stucky, D.E. Morse, Molecular cloning and characterization of lustrin a, a matrix protein from shell and pearl nacre of Haliotis rufescens. J. Biol. Chem. 272, 32472–32481 (1997). CrossRefGoogle Scholar
  47. 47.
    M. Kono, N. Hayashi, T. Samata, Molecular mechanism of the nacreous layer formation in Pinctada maxima. Biochem. Biophys. Res. Commun. 269, 213–218 (2000). CrossRefGoogle Scholar
  48. 48.
    P. Bork, Shuffled Domains in Extracellular Proteins. Febs. Lett. 286, 47–54 (1991). CrossRefGoogle Scholar
  49. 49.
    R. Har-el, M. Tanzer, L. Extracellular matrix. 3: evolution of the extracellular matrix in invertebrates. FASEB J. 7, 1115–1123 (1993)CrossRefGoogle Scholar
  50. 50.
    X. Shen, A.M. Belcher, P.K. Hansma, G.D. Stucky, D.E. Morse, Molecular cloning and characterization of lustrin A, a matrix protein from shell and pearl nacre of Haliotis rufescens. J. Biol. Chem. 272, 32472–32481 (1997)CrossRefGoogle Scholar
  51. 51.
    L. Patthy, Exon shuffling and other ways of module exchange. Matrix Biol. 15, 301–310; discussion 311–302 (1996)CrossRefGoogle Scholar
  52. 52.
    L. Patthy, Genome evolution and the evolution of exon-shuffling–a review. Gene 238, 103–114 (1999)CrossRefGoogle Scholar
  53. 53.
    Y. Dauphin et al., In situ chemical speciation of sulfur in calcitic biominerals and the simple prism concept. J. Struct. Biol. 142, 272–280 (2003)CrossRefGoogle Scholar
  54. 54.
    J.C. Marxen, M. Hammer, T. Gehrke, W. Becker, Carbohydrates of the organic shell matrix and the shell-forming tissue of the snail Biomphalaria glabrata (say). Biol. Bull. 194, 231–240 (1998). CrossRefGoogle Scholar
  55. 55.
    J.C. Marxen, W. Becker, Calcium binding constituents of the organic shell matrix from the freshwater snail Biomphalaria glabrata. Comp. Biochem. Phys. B. 127, 235–242 (2000). CrossRefGoogle Scholar
  56. 56.
    Q.L. Feng et al., Crystallographic alignment of calcite prisms in the oblique prismatic layer of Mytilus edulis shell. J. Mater. Sci. 35, 3337–3340 (2000). CrossRefGoogle Scholar
  57. 57.
    G. Falini, S. Albeck, S. Weiner, L. Addadi, Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271, 67–69 (1996). CrossRefGoogle Scholar
  58. 58.
    T. Samata et al., A new matrix protein family related to the nacreous layer formation of Pinctada fucata. Febs Letters 462, 225–229 (1999). CrossRefGoogle Scholar
  59. 59.
    H. Miyamoto et al., A carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. U. S. A. 93, 9657–9660 (1996). CrossRefGoogle Scholar
  60. 60.
    S. Sudo et al., Structures of mollusc shell framework proteins. Nature 387, 563–564 (1997). CrossRefGoogle Scholar
  61. 61.
    M. Sarikaya, H. Fong, D.W. Frech, R. Humbert, Biomimetic assembly of nanostructured materials. Mater. Sci. Forum 293, 83–97 (1999)CrossRefGoogle Scholar
  62. 62.
    C. Zhang, S. Li, Z.J. Ma, L.P. Xie, R.Q. Zhang, A novel matrix protein p10 from the nacre of pearl oyster (Pinctada fucata) and its effects on both CaCO3 crystal formation and mineralogenic cells. Mar. Biotechnol. 8, 624–633 (2006). CrossRefGoogle Scholar
  63. 63.
    C. Zhang, L.P. Xie, J. Huang, X.L. Liu, R.Q. Zhang, A novel matrix protein family participating in the prismatic layer framework formation of pearl oyster, Pinctada fucata. Biochem. Biophys. Res. Commun. 344, 735–740 (2006). CrossRefGoogle Scholar
  64. 64.
    Y.W. Kong et al., Cloning and characterization of Prisilkin-39, a novel matrix protein serving a dual role in the prismatic layer formation from the oyster Pinctada fucata. J. Biol. Chem. 284, 10841–10854 (2009). CrossRefGoogle Scholar
  65. 65.
    H.L. Liu et al., Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. Biochemistry 46, 844–851 (2007). CrossRefGoogle Scholar
  66. 66.
    C. Pan et al., A novel acidic matrix protein, PfN44, stabilizes magnesium calcite to inhibit the crystallization of aragonite. J. Biol. Chem. 289, 2776–2787 (2014). CrossRefGoogle Scholar
  67. 67.
    M. Rousseau et al., Biomineralisation markers during a phase of active growth in Pinctada margaritifera. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 135, 271–278 (2003)CrossRefGoogle Scholar
  68. 68.
    R. Tisi et al., Evidence for inositol triphosphate as a second messenger for glucose-induced calcium signalling in budding yeast. Curr. Genet. 45, 83–89 (2004). CrossRefGoogle Scholar
  69. 69.
    A. Takahashi, P. Camacho, J.D. Lechleiter, B. Herman, Measurement of intracellular calcium. Physiol. Rev. 79, 1089–1125 (1999)CrossRefGoogle Scholar
  70. 70.
    K.M. Wilbur, A.S.M. Saleuddin, The Mollusca, Shell Formation (Academic Press, New York, 1983)Google Scholar
  71. 71.
    L.B. Kirschner, A.L. Sorenson, M. Kriebel, Calcium and electric potential across the clam mantle. Science 131, 735–735 (1960). CrossRefGoogle Scholar
  72. 72.
    H. Petit, W.L. Davis, R.G. Jones, H.K. Hagler, Morphological-Studies on the Calcification Process in the Fresh-Water Mussel Amblema. Tissue Cell 12, 13–28 (1980). CrossRefGoogle Scholar
  73. 73.
    I. Marigomez, M. Soto, M.P. Cajaraville, E. Angulo, L. Giamberini, Cellular and subcellular distribution of metals in molluscs. Microsc. Res. Tech. 56, 358–392 (2002). CrossRefGoogle Scholar
  74. 74.
    T.A. Ryder, I.D. Bowen, Studies on transmembrane and paracellular phenomena in the foot of the slug agriolimax reticulatus (Mu). Cell Tissue Res. 183, 143–152 (1977)CrossRefGoogle Scholar
  75. 75.
    J.M. Neff, Ultrastructure of the outer epithelium of the mantle in the clam Mercenaria mercenaria in relation to calcification of the shell. Tissue Cell 4, 591–600 (1972)CrossRefGoogle Scholar
  76. 76.
    U. Karbach, Paracellular calcium-transport across the small-intestine. J. Nutr. 122, 672–677 (1992)CrossRefGoogle Scholar
  77. 77.
    U. Bielefeld, K.H. Kortje, H. Rahmann, W. Becker, The Shell-forming mantle epithelium of Biomphalaria-Glabrata (Pulmonata) – ultrastructure, permeability and cytochemistry. J. Mollus Stud. 59, 323–338 (1993). CrossRefGoogle Scholar
  78. 78.
    R. Bleher, J. Machado, Paracellular pathway in the shell epithelium of Anodonta cygnea. J. Exp. Zool. A Comp. Exp. Biol. 301, 419–427 (2004). CrossRefGoogle Scholar
  79. 79.
    J. Coimbra, J. Machado, P.L. Fernandes, H.G. Ferreira, K.G. Ferreira, Electrophysiology of the mantle of Anodonta-cygnea. J. Exp. Biol. 140, 65–88 (1988)Google Scholar
  80. 80.
    A.M. Coimbra, P.L. Fernandes, K.G. Ferreira, H.G. Ferreira, Intracellular calcium in the cells of the outer mantle epithelium of Anodonta-cygnea. Comp. Biochem. Phys. A. 103, 497–500 (1992). CrossRefGoogle Scholar
  81. 81.
    R. Bleher, J. Machado, Paracellular pathway in the shell epithelium of Anodonta cygnea. J. Exp. Zool. Part A 301a, 419–427 (2004). CrossRefGoogle Scholar
  82. 82.
    C. Lucu, Calcium-transport across isolated gill epithelium of Carcinus. J. Exp. Zool. 268, 339–346 (1994). CrossRefGoogle Scholar
  83. 83.
    R.E. Akins, R.S. Tuan, Transepithelial Calcium-Transport in the Chick Chorioallantoic Membrane .2. Compartmentalization of Calcium during Uptake. J. Cell Sci. 105, 381–388 (1993)Google Scholar
  84. 84.
    A. Ziegler, Ultrastructural evidence for transepithelial calcium transport in the anterior sternal epithelium of the terrestrial isopod Porcellio scaber (Crustacea) during the formation and resorption of CaCO3 deposits. Cell Tissue Res. 284, 459–466 (1996). CrossRefGoogle Scholar
  85. 85.
    M. Carre et al., Calcification rate influence on trace element concentrations in aragonitic bivalve shells: evidences and mechanisms. Geochim. Cosmochim. Acta 70, 4906–4920 (2006). CrossRefGoogle Scholar
  86. 86.
    P.E. Gibbs, J.A. Nott, A. Nicolaidou, M.J. Bebianno, The composition of phosphate granules in the digestive glands of marine prosobranch gastropods: variation in relation to taxonomy. J. Mollus Stud. 64, 423–433 (1998). CrossRefGoogle Scholar
  87. 87.
    J.D. Thomson, B.J.S. Pirie, S.G. George, Cellular metal distribution in the pacific oyster, Crassostrea-Gigas (THUN) determined by quantitative x-ray microprobe analysis. J. Exp. Mar. Biol. Ecol. 85, 37–45 (1985). CrossRefGoogle Scholar
  88. 88.
    C.K. Yap, S.G. Tan, A study on the potential of the Periostracum of Perna viridis as a biomonitoring material for Pb in tropical coastal waters based on correlation analysis. Sains Malays. 40, 809–819 (2011)Google Scholar
  89. 89.
    S.M. Adams, C.D. Shorey, M. Byrne, An ultrastructural and microanalytical study of metal-ion content in granular concretions of the freshwater mussel Hyridella depressa. Micron 28, 1–11 (1997). CrossRefGoogle Scholar
  90. 90.
    M. Pekkarinen, I. Valovirta, Histochemical and X-ray studies on tissue concretions and shells of Margaritifera margaritifera (Linnaeus). J. Shellfish Res. 16, 169–177 (1997)Google Scholar
  91. 91.
    R.G. Jones, W.L. Davis, Calcium-containing lysosomes in the outer mantle epithelial-cells of Amblema, a fresh-water mollusk. Anat. Rec. 203, 337–343 (1982). CrossRefGoogle Scholar
  92. 92.
    H.A. Lucero, D. Lebeche, B. Kaminer, ERcalcistorin/protein-disulfide isomerase acts as a calcium storage protein in the endoplasmic reticulum of a living cell – comparison with calreticulin and calsequestrin. J. Biol. Chem. 273, 9857–9863 (1998). CrossRefGoogle Scholar
  93. 93.
    J. Meldolesi, T. Pozzan, The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23, 10–14 (1998). CrossRefGoogle Scholar
  94. 94.
    P.J.E. Rowling, S.H. Mclaughlin, G.S. Pollock, R.B. Freedman, A single purification procedure for the major resident proteins of the Er lumen – Endoplasmin, bip, calreticulin and protein disulfide-isomerase. Protein Expres. Purif. 5, 331–336 (1994). CrossRefGoogle Scholar
  95. 95.
    P. Greenaway, Calcium regulation in freshwater crayfish Austropotamobius-Pallipes (Lereboullet) .1. Calcium balance in intermoult animal. J. Exp. Biol. 57, 471 (1972)Google Scholar
  96. 96.
    A.M. Katz, Molecular biology of calcium channels in the cardiovascular system. Am. J. Cardiol. 80, I17–I22 (1997)CrossRefGoogle Scholar
  97. 97.
    G.A. Ahearn, P.K. Mandal, A. Mandal, Calcium regulation in crustaceans during the molt cycle: A review and update. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 137, 247–257 (2004). CrossRefGoogle Scholar
  98. 98.
    P. Andrade, R. Willoughby, S.A. Pomponi, R.G. Kerr, Biosynthetic studies of the alkaloid, stevensine, in a cell culture of the marine sponge Teichaxinella morchella. Tetrahedron Lett. 40, 4775–4778 (1999). CrossRefGoogle Scholar
  99. 99.
    P. Westbroek, F. Marin, A marriage of bone and nacre. Nature 392, 861–862 (1998). CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Rongqing Zhang
    • 1
  • Liping Xie
    • 1
  • Zhenguang Yan
    • 2
  1. 1.School of Life SciencesTsinghua UniversityBeijingChina
  2. 2.Chinese Research Academy of Environmental SciencesBeijingChina

Personalised recommendations