Skip to main content

Emerging Role of Electromagnetic Field Therapy in Stroke

  • Chapter
  • First Online:
Advancement in the Pathophysiology of Cerebral Stroke

Abstract

Interest in the clinical utilization of the magnetic field is increasing globally. Various articles have suggested the use of magnetic fields to initiate neuroprotective and neuro-regenerative effects on different biological systems that are of critical importance for the treatment of various injuries. Electromagnetic therapy provides a secure method for the direct treatment of injuries. The magnetic field may cause cell proliferation, genotoxic effects, changes in cell membrane permeability, and osteoblast formation. Some studies focus on the application of magnetic fields with different frequency bands and its corresponding effects at a cellular level. It has recently found that the static magnetic field (SMF) and the pulsating magnetic field (PEMF) can enhance the therapeutic outcome owing to anti-inflammatory and neuro-regenerative effects in animals and humans. In this chapter, we have included various mechanisms for neuroprotection and many experimental pieces of evidence to support the hypothesis that magnetic fields might constitute a non-invasive mode of therapy. Meanwhile, some of the experimental studies demonstrate the occurrence of protection, and various other articles propose that magnetic fields influence biochemical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markov, M. S. (2007). Therapeutic application of static magnetic fields. The Environmentalist, 27(4), 457–463.

    Article  Google Scholar 

  2. Adey, W. R., (1993). Electromagnetic technology and the future of bioelectromagnetics. In Electricity and magnetism in biology and medicine (pp. 101–108). Plenary Lecture, Proceedings of the First World Congress of Electricity and Magnetism in Biology and Medicine, Buena Vista, Florida.

    Google Scholar 

  3. Adey, W. R. (2004). Potential therapeutic applications of nonthermal electromagnetic fields: Ensemble organization of cells in tissue as a factor in biological field sensing. In P. J. Rosch & M. S. Markov (Eds.), Bioelectromagnetic medicine (p. 1). Boca Raton: CRC.

    Google Scholar 

  4. Bassett, C. A. (1989). Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). Critical Reviews in Biomedical Engineering, 17(5), 451–529.

    CAS  PubMed  Google Scholar 

  5. Okano, H., Masuda, H., & Ohkubo, C. (2005). Effects of 25 mT static magnetic field on blood pressure in reserpine-induced hypotensive Wistar-Kyoto rats. Bioelectromagnetics, 26(1), 36–48.

    Article  Google Scholar 

  6. Vallbona, C., & Richards, T. (1999). Evolution of magnetic therapy from alternative to traditional medicine. Physical Medicine and Rehabilitation Clinics of North America, 10(3), 729–754.

    Article  CAS  Google Scholar 

  7. Rubik, B. (1997). Bioelectromagnetics & the future of medicine. Administrative Radiology Journal: AR, 16(8), 38–46.

    CAS  PubMed  Google Scholar 

  8. Shupak, N. M., Prato, F. S., & Thomas, A. W. (2003). Therapeutic uses of pulsed magnetic-field exposure: A review. Radio Science Bulletin, 307(12), 9À30.

    Google Scholar 

  9. Juutilainen, J., & Lang, S. (1997). Genotoxic, carcinogenic and teratogenic effects of electromagnetic fields. Introduction and overview. Mutation Research, Reviews in Mutation Research, 387(3), 165–171.

    Article  CAS  Google Scholar 

  10. Khoromi, S., Blackman, M. R., Kingman, A., Patsalides, A., Matheny, L. A., Adams, S., Pilla, A. A., & Max, M. B. (2007). Low-intensity permanent magnets in the treatment of chronic lumbar radicular pain. Journal of Pain and Symptom Management, 34(4), 434–445.

    Article  Google Scholar 

  11. Colbert, A. P., Wahbeh, H., Harling, N., Connelly, E., Schiffke, H. C., Forsten, C., Gregory, W. L., Markov, M. S., Souder, J. J., Elmer, P., & King, V. (2009). Static magnetic field therapy: A critical review of treatment parameters. Evidence-Based Complementary and Alternative Medicine, 6(2), 133–139.

    Article  Google Scholar 

  12. Trock, D. H. (2000). Electromagnetic fields and magnets: Investigational treatment for musculoskeletal disorders. Rheumatic Disease Clinics of North America, 26(1), 51–62.

    Article  CAS  Google Scholar 

  13. Wiskirchen, J., Groenewaeller, E. F., Kehlbach, R., Heinzelmann, F., Wittau, M. H. P. R., Rodemann, H. P., Claussen, C. D., & Duda, S. H. (1999). Long-term effects of repetitive exposure to a static magnetic field (1.5 T) on the proliferation of human fetal lung fibroblasts. Magnetic Resonance in Medicine, 41(3), 464–468.

    Article  CAS  Google Scholar 

  14. Raylman, R. R., Clavo, A. C., & Wahl, R. L. (1996). Exposure to strong static magnetic field slows the growth of human cancer cells in vitro. Bioelectromagnetics, 17(5), 358–363.

    Article  CAS  Google Scholar 

  15. Buemi, M., Marino, D., Di Pasquale, G., Floccari, F., Senatore, M., Aloisi, C., Grasso, F., Mondio, G., Perillo, P., Frisina, N., & Corica, F. (2001). Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field. Nephron, 87(3), 269–273.

    Article  CAS  Google Scholar 

  16. Farndale, R. W., & Murray, J. C. (1985). Pulsed electromagnetic fields promote collagen production in bone marrow fibroblasts via athermal mechanisms. Calcified Tissue International, 37(2), 178–182.

    Article  CAS  Google Scholar 

  17. Norton, L. A. (1982). Effects of a pulsed electromagnetic field on a mixed chondroblastic tissue culture. Clinical Orthopaedics and Related Research, 167, 280–290.

    CAS  Google Scholar 

  18. Sakai, A., Suzuki, K., Nakamura, T., Norimura, T., & Tsuchiya, T. (1991). Effects of pulsing electromagnetic fields on cultured cartilage cells. International Orthopaedics, 15(4), 341–346.

    Article  CAS  Google Scholar 

  19. Shomura, K. (1997). Effects of pulsing electromagnetic field on the proliferation and calcification of osteoblast-like cell line, MC3T3-E1. The Journal of Japan Orthodontic Society, 56(4), 211–223.

    Google Scholar 

  20. De Mattei, M., Caruso, A., Traina, G. C., Pezzetti, F., Baroni, T., & Sollazzo, V. (1999). Correlation between pulsed electromagnetic fields exposure time and cell proliferation increase in human osteosarcoma cell lines and human normal osteoblast cells in vitro. Bioelectromagnetics, 20(3), 177–182.

    Article  Google Scholar 

  21. Diniz, P., Shomura, K., Soejima, K., & Ito, G. (2002). Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics, 23(5), 398–405.

    Article  Google Scholar 

  22. Ikehata, M., Koana, T., Suzuki, Y., Shimizu, H., & Nakagawa, M. (1999). Mutagenicity and co-mutagenicity of static magnetic fields detected by bacterial mutation assay. Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis, 427(2), 147–156.

    Article  CAS  Google Scholar 

  23. Zmyślony, M., Palus, J., Jajte, J., Dziubaltowska, E., & Rajkowska, E. (2000). DNA damage in rat lymphocytes treated in vitro with iron cations and exposed to 7 mT magnetic fields (static or 50 Hz). Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis, 453(1), 89–96.

    Article  Google Scholar 

  24. Onodera, H., Jin, Z., Chida, S., Suzuki, Y., Tago, H., & Itoyama, Y. (2003). Effects of 10-T static magnetic field on human peripheral blood immune cells. Radiation Research, 159(6), 775–779.

    Article  CAS  Google Scholar 

  25. Sabo, J., Mirossay, L., Horovcak, L., Sarissky, M., Mirossay, A., & Mojzis, J. (2002). Effects of static magnetic field on human leukemic cell line HL-60. Bioelectrochemistry, 56(1), 227–231.

    Article  CAS  Google Scholar 

  26. Yamaguchi, H., Hosokawa, K., Soda, A., Miyamoto, H., & Kinouchi, Y. (1993). Effects of seven months’ exposure to a static 0.2 T magnetic field on growth and glycolytic activity of human gingival fibroblasts. Biochimica et Biophysica Acta (BBA) – General Subjects, 1156(3), 302–306.

    Article  CAS  Google Scholar 

  27. Hirai, T., Nakamichi, N., & Yoneda, Y. (2002). Activator protein-1 complex expressed by magnetism in cultured rat hippocampal neurons. Biochemical and Biophysical Research Communications, 292(1), 200–207.

    Article  CAS  Google Scholar 

  28. Hiraoka, M., Miyakoshi, J., Li, Y. P., Shung, B., Takebe, H., & Abe, M. (1992). Induction of c-fos gene expression by exposure to a static magnetic field in HeLaS3 cells. Cancer Research, 52(23), 6522–6524.

    CAS  PubMed  Google Scholar 

  29. Liboff, A. R., Cherng, S., Jenrow, K. A., & Bull, A. (2003). Calmodulin-dependent cyclic nucleotide phosphodiesterase activity is altered by 20 μT magnetostatic fields. Bioelectromagnetics, 24(1), 32–38.

    Article  CAS  Google Scholar 

  30. Aldinucci, C., Garcia, J. B., Palmi, M., Sgaragli, G., Benocci, A., Meini, A., Pessina, F., Rossi, C., Bonechi, C., & Pessina, G. P. (2003). The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte function. Bioelectromagnetics, 24(6), 373–379.

    Article  Google Scholar 

  31. Miyamoto, H., Yamaguchi, H., Ikehara, T., & Kinouchi, Y., (1996). Effects of electromagnetic fields on K+ (Rb+) uptake by HeLa cells. In Biological effects of magnetic and electromagnetic fields (pp. 101–119). Springer US.

    Google Scholar 

  32. Sonnier, H., Kolomytkin, O., & Marino, A. (2003). Action potentials from human neuroblastoma cells in magnetic fields. Neuroscience Letters, 337(3), 163–166.

    Article  CAS  Google Scholar 

  33. Grant, G., Cadossi, R., & Steinberg, G. (1994). Protection against focal cerebral ischemia following exposure to a pulsed electromagnetic field. Bioelectromagnetics, 15(3), 205–216.

    Article  CAS  Google Scholar 

  34. Albertini, A., Zucchini, P., Noera, G., Cadossi, R., Napoleone, C. P., & Pierangeli, A. (1999). Protective effect of low-frequency low energy pulsing electromagnetic fields on acute experimental myocardial infarcts in rats. Bioelectromagnetics, 20(6), 372–377.

    Article  CAS  Google Scholar 

  35. Di Carlo, A., White, N., Guo, F., Garrett, P., & Litovitz, T. (2002). Chronic electromagnetic field exposure decreases HSP70 levels and lowers cytoprotection. Journal of Cellular Biochemistry, 84(3), 447–454.

    Article  Google Scholar 

  36. Ronchi, R., Marano, L., Braidotti, P., Bianciardi, P., Calamia, M., Fiorentini, C., & Samaja, M. (2004). Effects of broad band electromagnetic fields on HSP70 expression and ischemia-reperfusion in rat hearts. Life Sciences, 75(16), 1925–1936.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandra Kant Singh Tekam .

Editor information

Editors and Affiliations

Basic Terminology

Basic Terminology

  1. 1.

    Magnetic induction –the capacity of a magnetic field to induce a magnetic phenomenon at a certain point. It is measured in gauss.

  2. 2.

    Magnetic flow –the current of any magnitude through a surface. Magnetic flow is measured by the number of lines that cross a surface. This number changes depending on the distance and position that has the surface respective to the magnetic field.

  3. 3.

    Power lines –show the field direction at each point.

  4. 4.

    Magnetic intensity –the strength that a field exerts on an electromagnetic charge unit placed in a point in that field in a time unit.

  5. 5.

    Frequency –the number of times per second that change between alternate polarities. It is measured in Hertz.

  6. 6.

    Frequency spectra –a frequency range.

  7. 7.

    Apoptosis – programmed cell death.

  8. 8.

    BCL-2 family of protein –consists of members that either promote or inhibit the apoptosis and control apoptosis by governing mitochondrial outer membrane permeabilization.

  9. 9.

    SMF – stationary magnetic field.

  10. 10.

    PEMF – pulsed electromagnetic field.

  11. 11.

    DC– direct current.

  12. 12.

    ELF – extremely low frequency.

  13. 13.

    MF – medium frequency.

  14. 14.

    DNA – deoxyribose nucleic acid.

  15. 15.

    HFLF – human fetal lung fibroblast.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tekam, C.K.S., Tripathi, A.K., Kumar, G., Patnaik, R. (2019). Emerging Role of Electromagnetic Field Therapy in Stroke. In: Patnaik, R., Tripathi, A., Dwivedi, A. (eds) Advancement in the Pathophysiology of Cerebral Stroke. Springer, Singapore. https://doi.org/10.1007/978-981-13-1453-7_8

Download citation

Publish with us

Policies and ethics