Skip to main content

Myofibers

  • Chapter
  • First Online:
Muscle Atrophy

Abstract

Muscle tissue is a highly specialized type of tissue, made up of cells that have as their fundamental properties excitability and contractility. The cellular elements that make up this type of tissue are called muscle fibers, or myofibers, because of the elongated shape they have. Contractility is due to the presence of myofibrils in the muscle fiber cytoplasm, as large cellular assemblies. Also, myofibers are responsible for the force that the muscle generates which represents a countless aspect of human life. Movements due to muscles are based on the ability of muscle fibers to use the chemical energy procured in metabolic processes, to shorten and then to return to the original dimensions. We describe in detail the levels of organization for the myofiber, and we correlate the structural aspects with the functional ones, beginning with neuromuscular transmission down to the biochemical reactions achieved in the sarcoplasmic reticulum by the release of Ca2+ and the cycling of crossbridges. Furthermore, we are reviewing the types of muscle contractions and the fiber-type classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roman W, Gomes ER (2017) Nuclear positioning in skeletal muscle. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2017.11.005

    Article  CAS  Google Scholar 

  2. Chemello F, Bean C, Cancellara P, Laveder P, Reggiani C, Lanfranchi G (2011) Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers. PLoS One 6(2):e16807. https://doi.org/10.1371/journal.pone.0016807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baker JS, McCormick MC, Robergs RA (2010) Interaction among skeletal muscle metabolic energy systems during intense exercise. J Nutr Metab 2010:905612. https://doi.org/10.1155/2010/905612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F (2003) The formation of skeletal muscle: from somite to limb. J Anat 202(1):59–68

    Article  Google Scholar 

  5. Coalson RE, Tomasek JJ (2012) Musculoskeletal System. In: Embryology (Oklahoma Notes), 2nd edn. Springer, New York

    Google Scholar 

  6. Braun T, Bober E, Rudnicki MA, Jaenisch R, Arnold HH (1994) MyoD expression marks the onset of skeletal myogenesis in Myf-5 mutant mice. Development 120(11):3083–3092

    CAS  PubMed  Google Scholar 

  7. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93(1):23–67. https://doi.org/10.1152/physrev.00043.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boonen KJ, Post MJ (2008) The muscle stem cell niche: regulation of satellite cells during regeneration. Tissue Eng Part B Rev 14(4):419–431. https://doi.org/10.1089/ten.teb.2008.0045

    Article  Google Scholar 

  9. Bentzinger CF, Wang YX, Rudnicki MA (2012) Building muscle: molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4(2). https://doi.org/10.1101/cshperspect.a008342

    Article  Google Scholar 

  10. Francetic T, Li Q (2011) Skeletal myogenesis and Myf5 activation. Transcription 2(3):109–114. https://doi.org/10.4161/trns.2.3.15829

    Article  PubMed  PubMed Central  Google Scholar 

  11. Collins CA, Gnocchi VF, White RB, Boldrin L, Perez-Ruiz A, Relaix F, Morgan JE, Zammit PS (2009) Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS One 4(2):e4475. https://doi.org/10.1371/journal.pone.0004475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Krause WJ (2005) Krause’s essential human histology for medical students 3rd. Universal Publishers, Boca Raton

    Google Scholar 

  13. Gartner LP, Hiatt JL, Strum JM (2011) BRS review series cell biology and histology. Lippincott Williams & Wilkins, Baltimore

    Google Scholar 

  14. Korthuis RJ (2011) Skeletal Muscle Circulation. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  15. Brooks SV (2003) Current topics for teaching skeletal muscle physiology. Adv Physiol Educ 27(1–4):171–182. https://doi.org/10.1152/advan.00025.2003

    Article  PubMed  Google Scholar 

  16. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531. https://doi.org/10.1152/physrev.00031.2010

    Article  CAS  PubMed  Google Scholar 

  17. Boncompagni S (2012) Severe muscle atrophy due to spinal cord injury can be reversed in complete absence of peripheral nerves. Eur J Transl Myol 22(4):161–200

    Article  Google Scholar 

  18. Infantolino BW, Ellis MJ, Challis JH (2010) Individual sarcomere lengths in whole muscle fibers and optimal fiber length computation. Anat Rec (Hoboken) 293(11):1913–1919. https://doi.org/10.1002/ar.21239

    Article  Google Scholar 

  19. Metzler DE (2003) The chemical reactions of living cells. In: Metzler DE (ed) The chemical reactions of living cells, 2nd edn. Academic Press, San Diego, pp 1088–1128

    Google Scholar 

  20. Kadi F, Thornell LE (2000) Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training. Histochem Cell Biol 113(2):99–103

    Article  CAS  Google Scholar 

  21. Bagshaw CR (1982) Outline studies of biology: muscle contraction. Chapman and Hall, London

    Book  Google Scholar 

  22. Morgan JE, Partridge TA (2003) Muscle satellite cells. Int J Biochem Cell Biol 35(8):1151–1156

    Article  CAS  Google Scholar 

  23. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122(2):289–301. https://doi.org/10.1016/j.cell.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  24. Al-Qusairi L, Laporte J (2011) T-tubule biogenesis and triad formation in skeletal muscle and implication in human diseases. Skelet Muscle 1(1):26. https://doi.org/10.1186/2044-5040-1-26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bennett PM, Maggs AM, Baines AJ, Pinder JC (2006) The transitional junction: a new functional subcellular domain at the intercalated disc. Mol Biol Cell 17(4):2091–2100. https://doi.org/10.1091/mbc.E05-12-1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Henderson CA, Gomez CG, Novak SM, Mi-Mi L, Gregorio CC (2017) Overview of the muscle cytoskeleton. Comp Physiol 7(3):891–944. https://doi.org/10.1002/cphy.c160033

    Article  Google Scholar 

  27. Bloch RJ, Capetanaki Y, O’Neill A, Reed P, Williams MW, Resneck WG, Porter NC, Ursitti JA (2002) Costameres: repeating structures at the sarcolemma of skeletal muscle. Clin Orthop Relat Res 403(Suppl):S203–S210

    Article  Google Scholar 

  28. O’Neill A, Williams MW, Resneck WG, Milner DJ, Capetanaki Y, Bloch RJ (2002) Sarcolemmal organization in skeletal muscle lacking desmin: evidence for cytokeratins associated with the membrane skeleton at costameres. Mol Biol Cell 13(7):2347–2359. https://doi.org/10.1091/mbc.01-12-0576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gawor M, Proszynski TJ (2018) The molecular cross talk of the dystrophin-glycoprotein complex. Ann N Y Acad Sci 1412(1):62–72. https://doi.org/10.1111/nyas.13500

    Article  CAS  PubMed  Google Scholar 

  30. Fridolfsson HN, Roth DM, Insel PA, Patel HH (2014) Regulation of intracellular signaling and function by caveolin. FASEB J 28(9):3823–3831. https://doi.org/10.1096/fj.14-252320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lo HP, Hall TE, Parton RG (2016) Mechanoprotection by skeletal muscle caveolae. BioArchitecture 6(1):22–27. https://doi.org/10.1080/19490992.2015.1131891

    Article  PubMed  PubMed Central  Google Scholar 

  32. Flucher BE, Takekura H, Franzini-Armstrong C (1993) Development of the excitation-contraction coupling apparatus in skeletal muscle: association of sarcoplasmic reticulum and transverse tubules with myofibrils. Dev Biol 160(1):135–147. https://doi.org/10.1006/dbio.1993.1292

    Article  CAS  PubMed  Google Scholar 

  33. Ferreira R, Vitorino R, Alves RM, Appell HJ, Powers SK, Duarte JA, Amado F (2010) Subsarcolemmal and intermyofibrillar mitochondria proteome differences disclose functional specializations in skeletal muscle. Proteomics 10(17):3142–3154. https://doi.org/10.1002/pmic.201000173

    Article  CAS  PubMed  Google Scholar 

  34. Takekura H, Sun X, Franzini-Armstrong C (1994) Development of the excitation-contraction coupling apparatus in skeletal muscle: peripheral and internal calcium release units are formed sequentially. J Muscle Res Cell Motil 15(2):102–118

    Article  CAS  Google Scholar 

  35. Stokes DL, Wagenknecht T (2000) Calcium transport across the sarcoplasmic reticulum: structure and function of Ca2+-ATPase and the ryanodine receptor. Eur J Biochem 267(17):5274–5279

    Article  CAS  Google Scholar 

  36. Rossi AE, Dirksen RT (2006) Sarcoplasmic reticulum: the dynamic calcium governor of muscle. Muscle Nerve 33(6):715–731. https://doi.org/10.1002/mus.20512

    Article  CAS  PubMed  Google Scholar 

  37. Flucher BE (1992) Structural analysis of muscle development: transverse tubules, sarcoplasmic reticulum, and the triad. Dev Biol 154(2):245–260

    Article  CAS  Google Scholar 

  38. Franzini-Armstrong C (1972) Studies of the triad. 3. Structure of the junction in fast twitch fibers. Tissue Cell 4(3):469–478

    Article  CAS  Google Scholar 

  39. Ono S (2010) Dynamic regulation of sarcomeric actin filaments in striated muscle. Cytoskeleton 67(11):677–692. https://doi.org/10.1002/cm.20476

    Article  CAS  PubMed  Google Scholar 

  40. Ottenheijm CA, Granzier H (2010) New insights into the structural roles of nebulin in skeletal muscle. J Biomed Biotechnol 2010:968139. https://doi.org/10.1155/2010/968139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Labeit S, Ottenheijm CA, Granzier H (2011) Nebulin, a major player in muscle health and disease. FASEB J 25(3):822–829. https://doi.org/10.1096/fj.10-157412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnston JR, Chase PB, Pinto JR (2018) Troponin through the looking-glass: emerging roles beyond regulation of striated muscle contraction. Oncotarget 9(1):1461–1482. https://doi.org/10.18632/oncotarget.22879

    Article  PubMed  Google Scholar 

  43. Ohtsuki I (2002) Calcium regulation by troponin and its genetic disorder in striated muscle contraction. Nihon yakurigaku zasshi Folia pharmacologica Japonica 120(1):20P–23P

    PubMed  Google Scholar 

  44. Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80(2):853–924. https://doi.org/10.1152/physrev.2000.80.2.853

    Article  CAS  PubMed  Google Scholar 

  45. Ohtsuki I (2005) Molecular basis of calcium regulation of striated muscle contraction. Adv Exp Med Biol 565:223–231.; discussion 397-403. https://doi.org/10.1007/0-387-24990-7_17

    Article  CAS  PubMed  Google Scholar 

  46. Chalovich JM (2002) Regulation of striated muscle contraction: a discussion. J Muscle Res Cell Motil 23(4):353–361

    Article  CAS  Google Scholar 

  47. Huxley HE (1953) Electron microscope studies of the organisation of the filaments in striated muscle. Biochim Biophys Acta 12(3):387–394

    Article  CAS  Google Scholar 

  48. Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173(4412):973–976

    Article  CAS  Google Scholar 

  49. Huxley AF, Niedergerke R (1954) Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173(4412):971–973

    Article  CAS  Google Scholar 

  50. Payne MR, Rudnick SE (1989) Regulation of vertebrate striated muscle contraction. Trends Biochem Sci 14(9):357–360

    Article  CAS  Google Scholar 

  51. Grigorenko BL, Rogov AV, Topol IA, Burt SK, Martinez HM, Nemukhin AV (2007) Mechanism of the myosin catalyzed hydrolysis of ATP as rationalized by molecular modeling. Proc Natl Acad Sci U S A 104(17):7057–7061. https://doi.org/10.1073/pnas.0701727104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yanagida T, Esaki S, Iwane AH, Inoue Y, Ishijima A, Kitamura K, Tanaka H, Tokunaga M (2000) Single-motor mechanics and models of the myosin motor. Philos Trans R Soc Lond Ser B Biol Sci 355(1396):441–447. https://doi.org/10.1098/rstb.2000.0585

    Article  CAS  Google Scholar 

  53. Huxley AF (2000) Mechanics and models of the myosin motor. Philos Trans R Soc Lond Ser B Biol Sci 355(1396):433–440. https://doi.org/10.1098/rstb.2000.0584

    Article  CAS  Google Scholar 

  54. Mann MD (2011) Muscle contraction: twitch and tetanic contractions. In: Mann MD (ed) The nervous system in action. http://michaeldmann.net/mann14.html. Last visited 7 Aug 2018

  55. Sejersted OM, Hargens AR, Kardel KR, Blom P, Jensen O, Hermansen L (1984) Intramuscular fluid pressure during isometric contraction of human skeletal muscle. J Appl Physiol Respir Environ Exerc Physiol 56(2):287–295. https://doi.org/10.1152/jappl.1984.56.2.287

    Article  CAS  PubMed  Google Scholar 

  56. Lee SC, Becker CN, Binder-Macleod SA (1999) Catchlike-inducing train activation of human muscle during isotonic contractions: burst modulation. J Appl Physiol 87(5):1758–1767. https://doi.org/10.1152/jappl.1999.87.5.1758

    Article  CAS  PubMed  Google Scholar 

  57. Sargeant AJ, Dolan P (1987) Human muscle function following prolonged eccentric exercise. Eur J Appl Physiol Occup Physiol 56(6):704–711

    Article  CAS  Google Scholar 

  58. Burghardt TP, Sun X, Wang Y, Ajtai K (2017) Auxotonic to isometric contraction transitioning in a beating heart causes myosin step-size to down shift. PLoS One 12(4):e0174690. https://doi.org/10.1371/journal.pone.0174690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dumitru D, Amato AA, Zwarts MJ (2002) Electrodiagnostic medicine. Hanley & Belfus, Philadelphia

    Google Scholar 

  60. Lexell J (1995) Human aging, muscle mass, and fiber type composition. J Gerontol A Biol Sci Med Sci 50 Spec No:11–16

    Google Scholar 

  61. Needham DM (1926) Red and white muscles. Physiol Rev 6:1–27

    Article  CAS  Google Scholar 

  62. Enad JG, Fournier M, Sieck GC (1989) Oxidative capacity and capillary density of diaphragm motor units. J Appl Physiol 67(2):620–627. https://doi.org/10.1152/jappl.1989.67.2.620

    Article  CAS  PubMed  Google Scholar 

  63. Sieck GC, Fournier M, Prakash YS, Blanco CE (1996) Myosin phenotype and SDH enzyme variability among motor unit fibers. J Appl Physiol 80(6):2179–2189. https://doi.org/10.1152/jappl.1996.80.6.2179

    Article  CAS  PubMed  Google Scholar 

  64. Zhang M, Gould M (2017) Segmental distribution of myosin heavy chain isoforms within single muscle fibers. Anat Rec (Hoboken) 300(9):1636–1642. https://doi.org/10.1002/ar.23578

    Article  CAS  Google Scholar 

  65. Quiroz-Rothe E, Rivero JL (2004) Coordinated expression of myosin heavy chains, metabolic enzymes, and morphological features of porcine skeletal muscle fiber types. Microsc Res Tech 65(1–2):43–61. https://doi.org/10.1002/jemt.20090

    Article  CAS  PubMed  Google Scholar 

  66. Fitts RH, Widrick JJ (1996) Muscle mechanics: adaptations with exercise-training. Exerc Sport Sci Rev 24:427–473

    Article  CAS  Google Scholar 

  67. Zhan WZ, Miyata H, Prakash YS, Sieck GC (1997) Metabolic and phenotypic adaptations of diaphragm muscle fibers with inactivation. J Appl Physiol 82(4):1145–1153. https://doi.org/10.1152/jappl.1997.82.4.1145

    Article  CAS  PubMed  Google Scholar 

  68. Hansen G, Martinuk KJ, Bell GJ, MacLean IM, Martin TP, Putman CT (2004) Effects of spaceflight on myosin heavy-chain content, fibre morphology and succinate dehydrogenase activity in rat diaphragm. Pflugers Arch: Eur J Physiol 448(2):239–247. https://doi.org/10.1007/s00424-003-1230-9

    Article  CAS  Google Scholar 

  69. Staron RS (1997) Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol = Revue canadienne de physiologie appliquee 22(4):307–327

    CAS  PubMed  Google Scholar 

  70. McComas AJ (1996) Skeletal muscle: form and function, 2nd edn. Human Kinetics Publishers, Champaign

    Google Scholar 

  71. Pette D, Peuker H, Staron RS (1999) The impact of biochemical methods for single muscle fibre analysis. Acta Physiol Scand 166(4):261–277. https://doi.org/10.1046/j.1365-201x.1999.00568.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanda Maria Cretoiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cretoiu, D., Pavelescu, L., Duica, F., Radu, M., Suciu, N., Cretoiu, S.M. (2018). Myofibers. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_2

Download citation

Publish with us

Policies and ethics