Skip to main content

NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy

  • Chapter
  • First Online:
Muscle Atrophy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1088))

Abstract

Atrophy is a classical hallmark of an array of disorders that affect skeletal muscle, ranging from inherited dystrophies, acquired inflammatory myopathies, ageing (sarcopenia) and critical illness (sepsis). The loss of muscle mass and function in these instances is associated with disability, poor quality of life and in some cases mortality. The mechanisms which underpin muscle atrophy are complex; however, significant research has demonstrated an important role for inflammatory cytokines such as tumour necrosis factor-alpha (TNF-α), mediated by the generation of reactive oxygen species (ROS) in muscle wasting. Moreover, activation of the transcription factor nuclear factor kappa B (NF-κB) is a key lynchpin in the overall processes that mediate muscle atrophy. The significance of NF-κB as a key regulator of muscle atrophy has been emphasised by several in vivo studies, which have demonstrated that NF-κB-targeted therapies can abrogate muscle atrophy. In this chapter, we will summarise current knowledge on the role of cytokines (TNF-α) and NF-κB in the loss of muscle mass and function and highlight perspectives towards future research and potential therapies to combat muscle atrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lightfoot A, McArdle A, Griffiths RD (2009) Muscle in defense. Crit Care Med 37(10 Suppl):S384–S390. https://doi.org/10.1097/CCM.0b013e3181b6f8a500003246-200910001-00013 [pii]

    Article  CAS  PubMed  Google Scholar 

  2. Fanzani A, Conraads VM, Penna F, Martinet W (2012) Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle 3(3):163–179. https://doi.org/10.1007/s13539-012-0074-6

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109(Suppl):S81–S96

    Article  CAS  PubMed  Google Scholar 

  4. Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21(2):223–244. doi:cr201113 [pii]. https://doi.org/10.1038/cr.2011.13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Carmody RJ, Ruan Q, Liou HC, Chen YH (2007) Essential roles of c-Rel in TLR-induced IL-23 p19 gene expression in dendritic cells. J Immunol 178(1):186–191 doi:178/1/186 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, Sillitoe K, Ryan S, Spiller DG, Unitt JF, Broomhead DS, Kell DB, Rand DA, See V, White MR (2009) Pulsatile stimulation determines timing and specificity of NF-kappaB-dependent transcription. Science 324(5924):242–246. doi:324/5924/242 [pii]. https://doi.org/10.1126/science.1164860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Idriss HT, Naismith JH (2000) TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech 50(3):184–195

    Article  CAS  PubMed  Google Scholar 

  8. Plomgaard P, Penkowa M, Pedersen BK (2005) Fiber type specific expression of TNF-alpha, IL-6 and IL-18 in human skeletal muscles. Exerc Immunol Rev 11:53–63

    PubMed  Google Scholar 

  9. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87–91

    Article  CAS  PubMed  Google Scholar 

  10. Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289(5488):2363–2366

    Article  CAS  PubMed  Google Scholar 

  11. Lexell J (1993) Ageing and human muscle: observations from Sweden. Can J Appl Physiol 18(1):2–18

    Article  CAS  PubMed  Google Scholar 

  12. Cuthbertson D, Smith K, Babraj J, Leese G, Waddell T, Atherton P, Wackerhage H, Taylor PM, Rennie MJ (2005) Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J 19(3):422–424. https://doi.org/10.1096/fj.04-2640fje

    Article  CAS  PubMed  Google Scholar 

  13. Vasilaki A, McArdle F, Iwanejko LM, McArdle A (2006) Adaptive responses of mouse skeletal muscle to contractile activity: The effect of age. Mech Ageing Dev 127(11):830–839. https://doi.org/10.1016/j.mad.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  14. Lightfoot AP, Cooper RG (2016) The role of myokines in muscle health and disease. Curr Opin Rheumatol 28(6):661–666. https://doi.org/10.1097/BOR.0000000000000337

    Article  CAS  PubMed  Google Scholar 

  15. Monici MC, Aguennouz M, Mazzeo A, Messina C, Vita G (2003) Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology 60(6):993–997

    Article  CAS  PubMed  Google Scholar 

  16. Yang CC, Askanas V, Engel WK, Alvarez RB (1998) Immunolocalization of transcription factor NF-kappaB in inclusion-body myositis muscle and at normal human neuromuscular junctions. Neurosci Lett 254(2):77–80

    Article  CAS  PubMed  Google Scholar 

  17. Schneider C, Gold R, Dalakas MC, Schmied M, Lassmann H, Toyka KV, Hartung HP (1996) MHC class I-mediated cytotoxicity does not induce apoptosis in muscle fibers nor in inflammatory T cells: studies in patients with polymyositis, dermatomyositis, and inclusion body myositis. J Neuropathol Exp Neurol 55(12):1205–1209

    Article  CAS  PubMed  Google Scholar 

  18. Nagaraju K, Casciola-Rosen L, Lundberg I, Rawat R, Cutting S, Thapliyal R, Chang J, Dwivedi S, Mitsak M, Chen YW, Plotz P, Rosen A, Hoffman E, Raben N (2005) Activation of the endoplasmic reticulum stress response in autoimmune myositis: potential role in muscle fiber damage and dysfunction. Arthritis Rheum 52(6):1824–1835. https://doi.org/10.1002/art.21103

    Article  CAS  PubMed  Google Scholar 

  19. Nowak KJ, Davies KE (2004) Duchenne muscular dystrophy and dystrophin: pathogenesis and opportunities for treatment. EMBO Rep 5(9):872–876. https://doi.org/10.1038/sj.embor.7400221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Acharyya S, Villalta SA, Bakkar N, Bupha-Intr T, Janssen PM, Carathers M, Li ZW, Beg AA, Ghosh S, Sahenk Z, Weinstein M, Gardner KL, Rafael-Fortney JA, Karin M, Tidball JG, Baldwin AS, Guttridge DC (2007) Interplay of IKK/NF-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 117(4):889–901. https://doi.org/10.1172/JCI30556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhatnagar S, Panguluri SK, Gupta SK, Dahiya S, Lundy RF, Kumar A (2010) Tumor necrosis factor-alpha regulates distinct molecular pathways and gene networks in cultured skeletal muscle cells. PLoS One 5(10):e13262. https://doi.org/10.1371/journal.pone.0013262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lightfoot AP, Sakellariou GK, Nye GA, McArdle F, Jackson MJ, Griffiths RD, McArdle A (2015) SS-31 attenuates TNF-alpha induced cytokine release from C2C12 myotubes. Redox Biol 6:253–259. https://doi.org/10.1016/j.redox.2015.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307(6):E469–E484. https://doi.org/10.1152/ajpendo.00204.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG, Hasselgren PO, Frontera WR, Lee J, Glass DJ, Shoelson SE (2004) IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 119(2):285–298. https://doi.org/10.1016/j.cell.2004.09.027

    Article  CAS  PubMed  Google Scholar 

  26. Mourkioti F, Kratsios P, Luedde T, Song YH, Delafontaine P, Adami R, Parente V, Bottinelli R, Pasparakis M, Rosenthal N (2006) Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration. J Clin Invest 116(11):2945–2954. https://doi.org/10.1172/JCI28721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Conti F, Ceccarelli F, Massaro L, Cipriano E, Di Franco M, Alessandri C, Spinelli FR, Scrivo R (2013) Biological therapies in rheumatic diseases. Clin Ter 164(5):e413–e428. https://doi.org/10.7417/CT.2013.1622

    Article  CAS  PubMed  Google Scholar 

  28. Grounds MD, Torrisi J (2004) Anti-TNFalpha (Remicade) therapy protects dystrophic skeletal muscle from necrosis. FASEB J 18(6):676–682. https://doi.org/10.1096/fj.03-1024com

    Article  CAS  PubMed  Google Scholar 

  29. Grounds MD, Davies M, Torrisi J, Shavlakadze T, White J, Hodgetts S (2005) Silencing TNFalpha activity by using Remicade or Enbrel blocks inflammation in whole muscle grafts: an in vivo bioassay to assess the efficacy of anti-cytokine drugs in mice. Cell Tissue Res 320(3):509–515. https://doi.org/10.1007/s00441-005-1102-z

    Article  CAS  PubMed  Google Scholar 

  30. Lundberg IE, Vencovsky J, Alexanderson H (2014) Therapy of myositis: biological and physical. Curr Opin Rheumatol 26(6):704–711. https://doi.org/10.1097/BOR.0000000000000109

    Article  CAS  PubMed  Google Scholar 

  31. Kopp E, Ghosh S (1994) Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 265(5174):956–959

    Article  CAS  PubMed  Google Scholar 

  32. Oh J, Sinha I, Tan KY, Rosner B, Dreyfuss JM, Gjata O, Tran P, Shoelson SE, Wagers AJ (2016) Age-associated NF-kappaB signaling in myofibers alters the satellite cell niche and re-strains muscle stem cell function. Aging (Albany NY) 8(11):2871–2896. https://doi.org/10.18632/aging.101098

    Article  CAS  PubMed Central  Google Scholar 

  33. Buhrmann C, Mobasheri A, Busch F, Aldinger C, Stahlmann R, Montaseri A, Shakibaei M (2011) Curcumin modulates nuclear factor kappaB (NF-kappaB)-mediated inflammation in human tenocytes in vitro: role of the phosphatidylinositol 3-kinase/Akt pathway. J Biol Chem 286(32):28556–28566. https://doi.org/10.1074/jbc.M111.256180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pan Y, Chen C, Shen Y, Zhu CH, Wang G, Wang XC, Chen HQ, Zhu MS (2008) Curcumin alleviates dystrophic muscle pathology in mdx mice. Mol Cells 25(4):531–537

    CAS  PubMed  Google Scholar 

  35. Spriggs DR, Deutsch S, Kufe DW (1992) Genomic structure, induction, and production of TNF-alpha. Immunol Ser 56:3–34

    CAS  PubMed  Google Scholar 

  36. Vilcek J, Lee TH (1991) Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem 266(12):7313–7316

    CAS  PubMed  Google Scholar 

  37. Smith RA, Baglioni C (1987) The active form of tumor necrosis factor is a trimer. J Biol Chem 262(15):6951–6954

    CAS  PubMed  Google Scholar 

  38. Loetscher H, Pan YC, Lahm HW, Gentz R, Brockhaus M, Tabuchi H, Lesslauer W (1990) Molecular cloning and expression of the human 55 kd tumor necrosis factor receptor. Cell 61(2):351–359 doi:0092-8674(90)90815-V [pii]

    Article  CAS  PubMed  Google Scholar 

  39. Ryffel B, Mihatsch MJ (1993) TNF receptor distribution in human tissues. Int Rev Exp Pathol 34 Pt B:149–156

    Article  CAS  PubMed  Google Scholar 

  40. Chen G, Goeddel DV (2002) TNF-R1 signaling: a beautiful pathway. Science 296(5573):1634–1635. https://doi.org/10.1126/science.1071924 296/5573/1634 [pii]

    Article  CAS  PubMed  Google Scholar 

  41. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B (1975) An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A 72(9):3666–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beutler B, Greenwald D, Hulmes JD, Chang M, Pan YC, Mathison J, Ulevitch R, Cerami A (1985) Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 316(6028):552–554

    Article  CAS  PubMed  Google Scholar 

  43. Tracey KJ, Beutler B, Lowry SF, Merryweather J, Wolpe S, Milsark IW, Hariri RJ, Fahey TJ 3rd, Zentella A, Albert JD et al (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234(4775):470–474

    Article  CAS  PubMed  Google Scholar 

  44. Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC, Lowry SF, Cerami A (1987) Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteraemia. Nature 330(6149):662–664. https://doi.org/10.1038/330662a0

    Article  CAS  PubMed  Google Scholar 

  45. Casey LC, Balk RA, Bone RC (1993) Plasma cytokine and endotoxin levels correlate with survival in patients with the sepsis syndrome. Ann Intern Med 119(8):771–778

    Article  CAS  PubMed  Google Scholar 

  46. Finn PJ, Plank LD, Clark MA, Connolly AB, Hill GL (1996) Assessment of involuntary muscle function in patients after critical injury or severe sepsis. JPEN J Parenter Enteral Nutr 20(5):332–337. https://doi.org/10.1177/0148607196020005332

    Article  CAS  PubMed  Google Scholar 

  47. Lang CH, Frost RA (2007) Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor alpha. Metabolism 56(1):49–57 doi:S0026-0495(06)00318-0 [pii]. https://doi.org/10.1016/j.metabol.2006.08.025

    Article  CAS  PubMed  Google Scholar 

  48. Li YP, Schwartz RJ, Waddell ID, Holloway BR, Reid MB (1998) Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J 12(10):871–880

    Article  CAS  PubMed  Google Scholar 

  49. Li YP, Reid MB (2000) NF-kappaB mediates the protein loss induced by TNF-alpha in differentiated skeletal muscle myotubes. Am J Physiol Regul Integr Comp Physiol 279(4):R1165–R1170

    Article  CAS  PubMed  Google Scholar 

  50. Thaloor D, Miller KJ, Gephart J, Mitchell PO, Pavlath GK (1999) Systemic administration of the NF-kappaB inhibitor curcumin stimulates muscle regeneration after traumatic injury. Am J Phys 277(2 Pt 1):C320–C329

    Article  CAS  Google Scholar 

  51. Hardin BJ, Campbell KS, Smith JD, Arbogast S, Smith J, Moylan JS, Reid MB (2008) TNF-alpha acts via TNFR1 and muscle-derived oxidants to depress myofibrillar force in murine skeletal muscle. J Appl Physiol 104(3):694–699. doi:00898.2007 [pii]. https://doi.org/10.1152/japplphysiol.00898.2007

    Article  CAS  PubMed  Google Scholar 

  52. Wilcox P, Milliken C, Bressler B (1996) High-dose tumor necrosis factor alpha produces an impairment of hamster diaphragm contractility. Attenuation with a prostaglandin inhibitor. Am J Respir Crit Care Med 153(5):1611–1615

    Article  CAS  PubMed  Google Scholar 

  53. Li X, Moody MR, Engel D, Walker S, Clubb FJ Jr, Sivasubramanian N, Mann DL, Reid MB (2000) Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 102(14):1690–1696

    Article  CAS  PubMed  Google Scholar 

  54. Supinski GS, Callahan LA (2006) Caspase activation contributes to endotoxin-induced diaphragm weakness. J Appl Physiol 100(6):1770–1777. doi:01288.2005 [pii]. https://doi.org/10.1152/japplphysiol.01288.2005

    Article  CAS  PubMed  Google Scholar 

  55. Llovera M, Garcia-Martinez C, Agell N, Lopez-Soriano FJ, Argiles JM (1997) TNF can directly induce the expression of ubiquitin-dependent proteolytic system in rat soleus muscles. Biochem Biophys Res Commun 230(2):238–241 doi:S0006291X96958271 [pii]

    Article  CAS  PubMed  Google Scholar 

  56. Lecker SH, Solomon V, Mitch WE, Goldberg AL (1999) Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J Nutr 129(1S Suppl):227S–237S

    Article  CAS  PubMed  Google Scholar 

  57. Li YP, Lecker SH, Chen Y, Waddell ID, Goldberg AL, Reid MB (2003) TNF-alpha increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. FASEB J 17(9):1048–1057

    Article  CAS  PubMed  Google Scholar 

  58. Buck M, Chojkier M (1996) Muscle wasting and dedifferentiation induced by oxidative stress in a murine model of cachexia is prevented by inhibitors of nitric oxide synthesis and antioxidants. EMBO J 15(8):1753–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sen CK, Khanna S, Reznick AZ, Roy S, Packer L (1997) Glutathione regulation of tumor necrosis factor-alpha-induced NF-kappa B activation in skeletal muscle-derived L6 cells. Biochem Biophys Res Commun 237(3):645–649

    Article  CAS  PubMed  Google Scholar 

  60. Li YP, Chen Y, Li AS, Reid MB (2003) Hydrogen peroxide stimulates ubiquitin-conjugating activity and expression of genes for specific E2 and E3 proteins in skeletal muscle myotubes. Am J Physiol Cell Physiol 285(4):C806–C812

    Article  CAS  PubMed  Google Scholar 

  61. Siems W, Capuozzo E, Lucano A, Salerno C, Crifo C (2003) High sensitivity of plasma membrane ion transport ATPases from human neutrophils towards 4-hydroxy-2,3-trans-nonenal. Life Sci 73(20):2583–2590 doi:S0024320503006611 [pii]

    Article  CAS  PubMed  Google Scholar 

  62. Purintrapiban J, Wang MC, Forsberg NE (2003) Degradation of sarcomeric and cytoskeletal proteins in cultured skeletal muscle cells. Comp Biochem Physiol B Biochem Mol Biol 136(3):393–401

    Article  PubMed  Google Scholar 

  63. Benatti FB, Pedersen BK (2015) Exercise as an anti-inflammatory therapy for rheumatic diseases-myokine regulation. Nat Rev Rheumatol 11(2):86–97. https://doi.org/10.1038/nrrheum.2014.193

    Article  CAS  PubMed  Google Scholar 

  64. Pal M, Febbraio MA, Whitham M (2014) From cytokine to myokine: the emerging role of interleukin-6 in metabolic regulation. Immunol Cell Biol 92(4):331–339. https://doi.org/10.1038/icb.2014.16

    Article  CAS  PubMed  Google Scholar 

  65. Tsujinaka T, Fujita J, Ebisui C, Yano M, Kominami E, Suzuki K, Tanaka K, Katsume A, Ohsugi Y, Shiozaki H, Monden M (1996) Interleukin 6 receptor antibody inhibits muscle atrophy and modulates proteolytic systems in interleukin 6 transgenic mice. J Clin Invest 97(1):244–249. https://doi.org/10.1172/JCI118398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Baltgalvis KA, Berger FG, Pena MM, Davis JM, White JP, Carson JA (2009) Muscle wasting and interleukin-6-induced atrogin-I expression in the cachectic Apc ( Min/+ ) mouse. Pflugers Arch 457(5):989–1001. https://doi.org/10.1007/s00424-008-0574-6

    Article  CAS  PubMed  Google Scholar 

  67. Haddad F, Zaldivar F, Cooper DM (1985) Adams GR (2005) IL-6-induced skeletal muscle atrophy. J Appl Physiol 98(3):911–917. https://doi.org/10.1152/japplphysiol.01026.2004

    Article  CAS  Google Scholar 

  68. Pelosi M, De Rossi M, Barberi L, Musaro A (2014) IL-6 impairs myogenic differentiation by downmodulation of p90RSK/eEF2 and mTOR/p70S6K axes, without affecting AKT activity. Biomed Res Int 2014:206026. https://doi.org/10.1155/2014/206026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kawasumi H, Gono T, Kawaguchi Y, Kaneko H, Katsumata Y, Hanaoka M, Kataoka S, Yamanaka H (2014) IL-6, IL-8, and IL-10 are associated with hyperferritinemia in rapidly progressive interstitial lung disease with polymyositis/dermatomyositis. Biomed Res Int 2014:815245. https://doi.org/10.1155/2014/815245

    Article  PubMed  PubMed Central  Google Scholar 

  70. Okiyama N, Sugihara T, Iwakura Y, Yokozeki H, Miyasaka N, Kohsaka H (2009) Therapeutic effects of interleukin-6 blockade in a murine model of polymyositis that does not require interleukin-17A. Arthritis Rheum 60(8):2505–2512. https://doi.org/10.1002/art.24689

    Article  CAS  PubMed  Google Scholar 

  71. Narazaki M, Hagihara K, Shima Y, Ogata A, Kishimoto T, Tanaka T (2011) Therapeutic effect of tocilizumab on two patients with polymyositis. Rheumatology (Oxford) 50(7):1344–1346. https://doi.org/10.1093/rheumatology/ker152

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Shelley Rawson for helpful discussion in the preparation of this chapter.

Competing Financial Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam P. Lightfoot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thoma, A., Lightfoot, A.P. (2018). NF-kB and Inflammatory Cytokine Signalling: Role in Skeletal Muscle Atrophy. In: Xiao, J. (eds) Muscle Atrophy. Advances in Experimental Medicine and Biology, vol 1088. Springer, Singapore. https://doi.org/10.1007/978-981-13-1435-3_12

Download citation

Publish with us

Policies and ethics