Skip to main content

RNA sequencing and Prediction Tools for Circular RNAs Analysis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1087))

Abstract

Circular RNAs (circRNAs) are noncoding and single-stranded RNA transcripts able to form covalently circular-closed structures. They are generated through alternative splicing events and widely expressed from human to viruses. CircRNAs have been appointed as potential regulators of microRNAs (miRNAs), RNA-binding proteins (RPBs), and lineal protein-coding transcripts. Although their mechanism of action remains unclear, the deregulation of circular RNAs has been confirmed in different diseases such as Alzheimer or cancer.

The introduction of high-throughput next-generation sequencing (NGS) technology provides millions of short RNA sequences at single-nucleotide level, allowing an accurate and proficient method to measure circular RNAs. Novel protocols based on non-polyadenylated RNAs, rRNA-depleted, and RNA exonuclease-based enrichment approaches (RNase R) have taken even further the possibility of detecting circRNAs.

Besides, the identification of circRNAs presence requires the development of specific bioinformatics tools to detect junction-spanning sequences from transcriptome deep-sequencing samples. Thus, recently established bioinformatics’ approaches have permitted the discovery of an elevated number of different circRNAs in diverse organisms. In that sense, recent studies have compared different methods and advocate the simultaneous use of more than one prediction tool. For that reason, we want to highlight pipelines such as miARma-Seq that is able to execute various circular RNA identification algorithms in an easy way, without the tedious installation of third-party prerequisites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Nigro JM, Cho KR, Fearon ER et al (1991) Scrambled exons. Cell 64(3):607–613

    Article  CAS  PubMed  Google Scholar 

  2. Cocquerelle C, Mascrez B, Hetuin D et al (1993) Mis-splicing yields circular RNA molecules. FASEB J 7(1):155–160

    Article  CAS  PubMed  Google Scholar 

  3. Salzman J, Gawad C, Wang PL et al (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abu N, Jamal R (2016) Circular RNAs as promising biomarkers: a mini-review. Front Physiol 7:355

    Article  PubMed  PubMed Central  Google Scholar 

  5. Morris KV, Mattick JS (2014) The rise of regulatory RNA. Nat Rev Genet 15(6):423–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lasda E, Parker R (2014) Circular RNAs: diversity of form and function. RNA 20(12):1829–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17(4):205–211

    Article  CAS  PubMed  Google Scholar 

  8. Gruner H, Cortes-Lopez M, Cooper DA et al (2016) CircRNA accumulation in the aging mouse brain. Sci Rep 6:38907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lukiw WJ (2013) Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet 4:307

    PubMed  PubMed Central  Google Scholar 

  10. Memczak S, Jens M, Elefsinioti A et al (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338

    Article  CAS  PubMed  Google Scholar 

  11. Umekage S, Uehara T, Yoshinobu F et al (2012) In vivo circular RNA expression by the permuted intron-exon method. Innov Biotechnol 76:1

    Google Scholar 

  12. Ashwal-Fluss R, Meyer M, Pamudurti NR et al (2014) circRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56(1):55–66

    Article  CAS  PubMed  Google Scholar 

  13. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zaphiropoulos PG (1996) Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: correlation with exon skipping. Proc Natl Acad Sci U S A 93(13):6536–6541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Salzman J, Chen RE, Olsen MN et al (2013) Cell-type specific features of circular RNA expression. PLoS Genet 9(9):e1003777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jeck WR, Sorrentino JA, Wang K et al (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hansen TB, Jensen TI, Clausen BH et al (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    Article  CAS  PubMed  Google Scholar 

  18. Yap KL, Li S, Munoz-Cabello AM et al (2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Burd CE, Jeck WR, Liu Y et al (2010) Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk. PLoS Genet 6(12):e1001233

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li Z, Huang C, Bao C et al (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22(3):256–264

    Article  CAS  PubMed  Google Scholar 

  21. Braunschweig U, Barbosa-Morais NL, Pan Q et al (2014) Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res 24(11):1774–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rybak-Wolf A, Stottmeister C, Glazar P et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  PubMed  Google Scholar 

  23. Huang S, Yang B, Chen BJ et al (2017) The emerging role of circular RNAs in transcriptome regulation. Genomics 109(5–6):401–407

    Article  CAS  PubMed  Google Scholar 

  24. Du WW, Yang W, Liu E et al (2016) Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res 44(6):2846–2858

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen CY, Sarnow P (1995) Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268(5209):415–417

    Article  CAS  PubMed  Google Scholar 

  26. Legnini I, Di Timoteo G, Rossi F et al (2017) Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell 66(1):22–37 e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pamudurti NR, Bartok O, Jens M et al (2017) Translation of CircRNAs. Mol Cell 66(1):9–21 e27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang Y, Fan X, Mao M et al (2017) Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res 27(5):626–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo JU, Agarwal V, Guo H et al (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15(7):409

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zhang XO, Wang HB, Zhang Y et al (2014) Complementary sequence-mediated exon circularization. Cell 159(1):134–147

    Article  CAS  PubMed  Google Scholar 

  31. Labaj PP, Leparc GG, Linggi BE et al (2011) Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling. Bioinformatics 27(13):i383–i391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki H, Zuo Y, Wang J et al (2006) Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res 34(8):e63

    Article  PubMed  PubMed Central  Google Scholar 

  33. Danan M, Schwartz S, Edelheit S et al (2012) Transcriptome-wide discovery of circular RNAs in Archaea. Nucleic Acids Res 40(7):3131–3142

    Article  CAS  PubMed  Google Scholar 

  34. Wang K, Singh D, Zeng Z et al (2010) MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res 38(18):e178

    Article  PubMed  PubMed Central  Google Scholar 

  35. Roy CK, Olson S, Graveley BR et al (2015) Assessing long-distance RNA sequence connectivity via RNA-templated DNA-DNA ligation. elife 4:e03700

    Article  PubMed Central  Google Scholar 

  36. Cocquet J, Chong A, Zhang G et al (2006) Reverse transcriptase template switching and false alternative transcripts. Genomics 88(1):127–131

    Article  CAS  PubMed  Google Scholar 

  37. Capel B, Swain A, Nicolis S et al (1993) Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 73(5):1019–1030

    Article  CAS  PubMed  Google Scholar 

  38. Braissant O, Wahli W (1998) A simplified in situ hybridization protocol using non-radioactively labeled probes to detect abundant and rare mRNAs on tissue sections. Biochemica 1:6

    Google Scholar 

  39. Schindler CW, Krolewski JJ, Rush MG (1982) Selective trapping of circular double-stranded DNA molecules in solidifying agarose. Plasmid 7(3):263–270

    Article  CAS  PubMed  Google Scholar 

  40. Awan AR, Manfredo A, Pleiss JA (2013) Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans. Proc Natl Acad Sci U S A 110(31):12762–12767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen BJ, Mills JD, Takenaka K et al (2016) Characterization of circular RNAs landscape in multiple system atrophy brain. J Neurochem 139(3):485–496

    Article  CAS  PubMed  Google Scholar 

  42. Glazar P, Papavasileiou P, Rajewsky N (2014) circBase: a database for circular RNAs. RNA 20(11):1666–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang XO, Dong R, Zhang Y et al (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hansen TB, Veno MT, Damgaard CK et al (2016) Comparison of circular RNA prediction tools. Nucleic Acids Res 44(6):e58

    Article  PubMed  Google Scholar 

  45. Zeng X, Lin W, Guo M et al (2017) A comprehensive overview and evaluation of circular RNA detection tools. PLoS Comput Biol 13(6):e1005420

    Article  PubMed  PubMed Central  Google Scholar 

  46. Szabo L, Morey R, Palpant NJ et al (2015) Statistically based splicing detection reveals neural enrichment and tissue-specific induction of circular RNA during human fetal development. Genome Biol 16:126

    Article  PubMed  PubMed Central  Google Scholar 

  47. Izuogu OG, Alhasan AA, Alafghani HM et al (2016) PTESFinder: a computational method to identify post-transcriptional exon shuffling (PTES) events. BMC Bioinform 17:31

    Article  Google Scholar 

  48. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9(4):357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. You X, Conrad TO (2016) Acfs: accurate circRNA identification and quantification from RNA-Seq data. Sci Rep 6:38820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25(9):1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim D, Salzberg SL (2011) TopHat-fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol 12(8):R72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21

    Article  CAS  PubMed  Google Scholar 

  55. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Otto C, Stadler PF, Hoffmann S (2014) Lacking alignments? The next-generation sequencing mapper segemehl revisited. Bioinformatics 30(13):1837–1843

    Article  CAS  PubMed  Google Scholar 

  57. Yeo G, Burge CB (2004) Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol 11(2–3):377–394

    Article  CAS  PubMed  Google Scholar 

  58. Andres-Leon E, Nunez-Torres R, Rojas AM (2016) miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci Rep 6:25749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Andres-Leon E, Gonzalez Pena D, Gomez-Lopez G et al (2015) miRGate: a curated database of human, mouse and rat miRNA-mRNA targets. Database (Oxford) 2015:bav035

    Article  Google Scholar 

  60. Andres-Leon E, Gomez-Lopez G, Pisano DG (2017) Prediction of miRNA-mRNA interactions using miRGate. Methods Mol Biol 1580:225–237

    Article  CAS  PubMed  Google Scholar 

  61. Anders S (2010) FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  62. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:1

    Article  Google Scholar 

  63. Davis MP, van Dongen S, Abreu-Goodger C et al (2013) Kraken: a set of tools for quality control and analysis of high-throughput sequence data. Methods 63(1):41–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140

    Article  CAS  PubMed  Google Scholar 

  65. Tarazona S, Garcia-Alcalde F, Dopazo J et al (2011) Differential expression in RNA-seq: a matter of depth. Genome Res 21(12):2213–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xuan L, Qu L, Zhou H et al (2016) Circular RNA: a novel biomarker for progressive laryngeal cancer. Am J Transl Res 8(2):932–939

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin J, Li J, Huang B et al (2015) Exosomes: novel biomarkers for clinical diagnosis. ScientificWorldJournal 2015:657086

    Google Scholar 

  68. Lyu D, Huang S (2017) The emerging role and clinical implication of human exonic circular RNA. RNA Biol 14(8):1000–1006

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We wish to thank the No Surrender Cancer Trust for supporting the position and projects of ELJ at Imperial College London.

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Andrés-León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Jiménez, E., Rojas, A.M., Andrés-León, E. (2018). RNA sequencing and Prediction Tools for Circular RNAs Analysis. In: Xiao, J. (eds) Circular RNAs. Advances in Experimental Medicine and Biology, vol 1087. Springer, Singapore. https://doi.org/10.1007/978-981-13-1426-1_2

Download citation

Publish with us

Policies and ethics