Skip to main content

Surgical Navigation in Orthopedics: Workflow and System Review

  • Chapter
  • First Online:
Intelligent Orthopaedics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1093))

Abstract

Orthopedic surgery is a widely performed clinical procedure that deals with problems in relation to the bones, joints, and ligaments of the human body, such as musculoskeletal trauma, spine diseases, sports injuries, degenerative diseases, infections, tumors, and congenital disorders. Surgical navigation is generally recognized as the next generation technology of orthopedic surgery. The development of orthopedic navigation systems aims to analyze pre-, intra- and/or postoperative data in multiple modalities and provide an augmented reality 3-D visualization environment to improve clinical outcomes of surgical orthopedic procedures. This chapter investigates surgical navigation techniques and systems that are currently available in orthopedic procedures. In particular, optical tracking, electromagnetic localizers and stereoscopic vision, as well as commercialized orthopedic navigation systems are thoroughly discussed. Moreover, advances and development trends in orthopedic navigation are also discussed in this chapter. While current orthopedic navigation systems enable surgeons to make precise decisions in the operating room by integrating surgical planning, instrument tracking, and intraoperative imaging, it still remains an active research field which provides orthopedists with various technical disciplines, e.g., medical imaging, computer science, sensor technology, and robotics, to further develop current orthopedic navigation methods and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pharmaintelligence.informa.com/

References

  1. Angibaud LD, Dai Y, Liebelt RA, Gao B, Gulbransen SW, Silver XS (2015) Evaluation of the accuracy and precision of a next generation computer-assisted surgical system. Clin Orthop Surg 7(2):225–233

    Article  PubMed Central  Google Scholar 

  2. Aponte-Tinao LA, Ritacco LE, Milano FE, Ayerza MA, Farfalli GF (2015) Techniques in surgical navigation of extremity tumors: state of the art. Curr Rev Muscoskelet Med 8(4):319–323

    Article  Google Scholar 

  3. Bostel T, Nicolay NH, Grossmann JG, Mohr A, Delorme S, Echner G, Haring P, Debus J, Sterzing, F (2014) Mr-guidance – a clinical study to evaluate a shuttle-based MR-linac connection to provide MR-guided radiotherapy. Radiat Oncol 9:12

    Article  PubMed Central  Google Scholar 

  4. Cho HS, Oh JH, Han I, Kim HS (2009) Joint-preserving limb salvage surgery under navigation guidance. Eur J Surg Oncol 100(3):227–232

    Article  Google Scholar 

  5. Cho HS, Park IH, Jeon IH, Kim YG, Han I, Kim HS (2011) Direct application of MR images to computer-assisted bone tumor surgery. J Orthop Sci 16(2):190–195

    Article  PubMed Central  Google Scholar 

  6. Chowdhary A, Drittenbass L, Dubois-Ferrière V, Stern R, Assal M (2016) Intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Orthopedics 39(5): e1005–e1010

    Article  PubMed Central  Google Scholar 

  7. Conway DJ, Coughlin R, Caldwell A, Shearer D (2017) The institute for global orthopedics and traumatology a model for academic collaboration in orthopedic surgery. Front Public Health 5:Article 146

    Google Scholar 

  8. Enchev Y (2009) Neuronavigation: geneology, reality, and prospects. Neurosurg Focus 27(3):E11

    Article  PubMed Central  Google Scholar 

  9. Golby AJ (2015) Image-guided neurosurgery. Elsevier, Amsterdam

    Google Scholar 

  10. Harijan A, Halvorson EG (2011) Eponymous instruments in plastic surgery. Plast Reconstr Surg 127(1):456–465

    Article  CAS  PubMed Central  Google Scholar 

  11. He X, Popovic A, Flexman ML, Thienpharapa P, Noonan DP, Kroon R, Reinstein AL (2017) Shape sensing for orthopedic navigation. US Patent US20170281281A1, 5 Oct 2017

    Google Scholar 

  12. Hernandez D, Garimella R, Eltorai AEM, Daniels AH (2017) Computer-assisted orthopaedic surgery. Orthop Surg 9(2):152–158

    Article  PubMed Central  Google Scholar 

  13. Hsu HM, Chang IC, Lai TW (2016) Physicians perspectives of adopting computer-assisted navigation in orthopedic surgery. Int J Med Inform 94(10):207–214

    Article  PubMed Central  Google Scholar 

  14. Hutchinson M (2006) A brief atlas of the human body. Benjamin Cumming, San Francisco

    Google Scholar 

  15. Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, Seyler TM, Jinnah RH (2011) Robotic systems in orthopaedic surgery. Bone Jt J 93(10):1296–1299

    Article  CAS  Google Scholar 

  16. Li J, Wang Z, Guo Z, Chen GJ, Yang M, Pei GX (2014) Precise resection and biological reconstruction under navigation guidance for young patients with juxta-articular bone sarcoma in lower extremity: preliminary report. J Pediatr Orthop 34(1):101–108

    Article  CAS  PubMed Central  Google Scholar 

  17. Luo X, Wan Y, He X, Mori K (2015) Observation-driven adaptive differential evolution and its application to accurate and smooth bronchoscope three-dimensional motion tracking. Med Image Anal 24(1):282–296

    Article  PubMed Central  Google Scholar 

  18. Luo X, Mori K, Peters T (2018, in press) Advanced endoscopic navigation: surgical big data, methodology, and applications. Annu Rev Biomed Eng 20:221–251

    Article  CAS  PubMed Central  Google Scholar 

  19. Marieb EN, Hoehn KN (2015) Human anatomy & physiology. Pearson, Harlow

    Google Scholar 

  20. Moreland K (2013) A survey of visualization pipelines. IEEE Trans Vis Comput Graph 19(3): 367–378

    Article  PubMed Central  Google Scholar 

  21. Nielson G (2003) On marching cubes. IEEE Trans Vis Comput Graph 9(3):283–297

    Article  Google Scholar 

  22. Resnick D, Kransdorf M (2004) Bone and joint imaging. Elsevier-Saunders, Philadelphia

    Google Scholar 

  23. Roche M, Boillot M, McIntosh J (2015) Orthopedic navigation system with sensorized devices. US Patent US9011448, 21 Apr 2015

    Google Scholar 

  24. Shi C, Luo X, Qi P, Li T, Song S, Najdovski Z, Fukuda T, Ren H (2017) Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans Biomed Eng 64(8):1665–1678

    Article  PubMed Central  Google Scholar 

  25. So TY, Lam YL, Mak KL (2010) Computer-assisted navigation in bone tumor surgery: seamless workflow model and evolution of technique. J Pediatr Orthop 468(11):2985–2991

    Google Scholar 

  26. Takao M, Nishii T, Sakai T, Yoshikawa H, Sugano N (2014) Iliosacral screw insertion using CT-3D-fluoroscopy matching navigation. Injury 45(6): 988–994

    Article  PubMed Central  Google Scholar 

  27. Thomas GW, Johns BD, Kho JY, Anderson DD (2015) The validity and reliability of a hybrid reality simulator for wire navigation in orthopedic surgery. IEEE Trans Hum Mach Sys 45(1):119–125

    Article  Google Scholar 

  28. Wiesel SW, Delahay JN (2011) Essentials of orthopedic surgery. Springer, New York

    Book  Google Scholar 

  29. Wong KC, Kumta SM (2013) Computer-assisted tumor surgery in malignant bone tumors. Clin Orthop Relat Res 471(3):750–61

    Article  PubMed Central  Google Scholar 

  30. Wong KC, Kumta SM (2014) Use of computer navigation in orthopedic oncology. Curr Surg Rep 2(4):47

    Article  PubMed Central  Google Scholar 

  31. Zheng G, Dong X, Rajamani KT, Zhang X, Styner M, Thoranaghatte RU, Nolte LP, Ballester MAG (2007) Accurate and robust reconstruction of a surface model of the proximal femur from sparse-point data and a dense-point distribution model for surgical navigation. IEEE Trans Biomed Eng 54(12):2109–2122

    Article  PubMed Central  Google Scholar 

  32. Zheng G, Nolte LP (2015) Computer-assisted orthopedic surgery: current state and future perspective. Front Surg 2:66

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongbiao Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ewurum, C.H., Guo, Y., Pagnha, S., Feng, Z., Luo, X. (2018). Surgical Navigation in Orthopedics: Workflow and System Review. In: Zheng, G., Tian, W., Zhuang, X. (eds) Intelligent Orthopaedics. Advances in Experimental Medicine and Biology, vol 1093. Springer, Singapore. https://doi.org/10.1007/978-981-13-1396-7_4

Download citation

Publish with us

Policies and ethics