Skip to main content

Progress in the Treatment and Control of Lymphatic Filariasis

  • Chapter
  • First Online:
Book cover Lymphatic Filariasis

Abstract

Lymphatic filariasis caused by tissue nematodes is a nonfatal public health disease which causes huge deformities in several tropical and subtropical countries including India leading to severe man-hour loss. Mass drug administration using single-dose treatment with diethylcarbamazine or ivermectin in combination with albendazole has brought down filarial prevalence in several geographical regions; however, reports on development of resistance to mainstay drugs especially in veterinary settings are alarming. Discovery of Wolbachia endosymbionts in filarial parasites and dependence of filariids on these microorganisms for their fertility, growth and survival suggest these bacteria to be an attractive drug target. Knowledge on Brugia malayi genome has given huge impetus on the search for new drug molecules and novel drug targets. Modern bioinformatics approaches such as in silico drug designing and screening of compounds/target enzyme inhibitors or compound libraries as well as new assay development would facilitate the new drug discovery and development programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboobaker AA, Blaxter ML (2003) Use of RNA interference to investigate gene function in the human filarial nematode parasite Brugia malayi. Mol Biochem Parasitol 129(1):41–51

    Article  CAS  Google Scholar 

  • Ash LR, Riley JM (1970) Development of subperiodic Brugia malayi in the jird, Meriones unguiculatus, with notes on infections in other rodents. J Parasitol 56(5):969–973

    Article  CAS  Google Scholar 

  • Awadzi K, Boakye DA et al (2004) An investigation of persistent microfilaridermias despite multiple treatments with ivermectin, in two onchocerciasis-endemic foci in Ghana. Ann Trop Med Parasitol 98(3):231–249

    Article  CAS  Google Scholar 

  • Azeez S, Babu RO et al (2012) Virtual screening and in vitro assay of potential drug like inhibitors from spices against glutathione-S-transferase of filarial nematodes. J Mol Model 18(1):151–163

    Article  CAS  Google Scholar 

  • Babu BV, Kar SK (2004) Coverage, compliance and some operational issues of mass drug administration during the programme to eliminate lymphatic filariasis in Orissa, India. Trop Med Int Health 9(6):702–709

    Article  CAS  Google Scholar 

  • Babu S, Nutman TB (2003) Proinflammatory cytokines dominate the early immune response to filarial parasites. J Immunol 171(12):6723–6732

    Article  CAS  Google Scholar 

  • Bandi C, Dunn AM et al (2001) Inherited microorganisms, sex-specific virulence and reproductive parasitism. Trends Parasitol 17(2):88–94

    Article  CAS  Google Scholar 

  • Bennuru S, Meng Z et al (2011) Stage-specific proteomic expression patterns of the human filarial parasite Brugia malayi and its endosymbiont Wolbachia. Proc Natl Acad Sci USA 108(23):9649–9654

    Article  CAS  Google Scholar 

  • Brady M (2014) Seventh meeting of the Global Alliance to Eliminate Lymphatic Filariasis: reaching the vision by scaling up, scaling down, and reaching out. Parasit Vectors 7:46

    Article  Google Scholar 

  • Brotz-Oesterhelt H, Beyer D et al (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11(10):1082–1087

    Article  Google Scholar 

  • Bulman CA, Bidlow CM et al (2015) Repurposing auranofin as a lead candidate for treatment of lymphatic filariasis and onchocerciasis. PLoS Negl Trop Dis 9(2):e0003534

    Article  Google Scholar 

  • Campbell WC, Fisher MH et al (1983) Ivermectin: a potent new antiparasitic agent. Science 221(4613):823–828

    Article  CAS  Google Scholar 

  • Clare RH, Cook DA et al (2015) Development and validation of a high-throughput anti-Wolbachia whole-cell screen: a route to macrofilaricidal drugs against onchocerciasis and lymphatic filariasis. J Biomol Screen 20(1):64–69

    Article  Google Scholar 

  • Coles GC, Giordano-Fenton DJ et al (1994) Efficacy of moxidectin against nematodes in naturally infected sheep. Vet Rec 135(2):38–39

    Article  CAS  Google Scholar 

  • Cotreau MM, Warren S et al (2003) The antiparasitic moxidectin: safety, tolerability, and pharmacokinetics in humans. J Clin Pharmacol 43(10):1108–1115

    Article  CAS  Google Scholar 

  • Dabir P, Dabir S et al (2006) Immunoprophylactic evaluation of a 37-kDa Brugia malayi recombinant antigen in lymphatic filariasis. Clin Microbiol Infect 12(4):361–368

    Article  CAS  Google Scholar 

  • Day KP (1991) The endemic normal in lymphatic filariasis: A static concept. Parasitol Today 7(12):341–343

    Article  CAS  Google Scholar 

  • Debrah AY, Mand S et al (2007) Macrofilaricidal effect of 4 weeks of treatment with doxycycline on Wuchereria bancrofti. Trop Med Int Health 12(12):1433–1441

    Article  CAS  Google Scholar 

  • Dhamodharan R, Hoti SL et al (2012) Characterization of cofactor-independent phosphoglycerate mutase isoform-1 (Wb-iPGM) gene: a drug and diagnostic target from human lymphatic filarial parasite, Wuchereria bancrofti. Infect Genet Evol 12(5):957–965

    Article  CAS  Google Scholar 

  • Farelli JD, Galvin BD et al (2014) Structure of the trehalose-6-phosphate phosphatase from Brugia malayi reveals key design principles for anthelmintic drugs. PLoS Pathog 10(7):e1004245

    Article  Google Scholar 

  • Foster J, Ganatra M et al (2005a) The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol 3(4):e121

    Article  Google Scholar 

  • Foster JM, Zhang Y et al (2005b) Mining nematode genome data for novel drug targets. Trends Parasitol 21(3):101–104

    Article  CAS  Google Scholar 

  • Foster JM, Raverdy S et al (2009) The Wolbachia endosymbiont of Brugia malayi has an active phosphoglycerate mutase: a candidate target for anti-filarial therapies. Parasitol Res 104(5):1047–1052

    Article  Google Scholar 

  • Freedman DO, Nutman TB et al (1989) Protective immunity in bancroftian filariasis. Selective recognition of a 43-kD larval stage antigen by infection-free individuals in an endemic area. J Clin Invest 83(1):14–22

    Article  CAS  Google Scholar 

  • Galvin BD, Li Z et al (2014) A target repurposing approach identifies N-myristoyltransferase as a new candidate drug target in filarial nematodes. PLoS Negl Trop Dis 8(9):e3145

    Article  Google Scholar 

  • Ghedin E, Wang S et al (2007) Draft genome of the filarial nematode parasite Brugia malayi. Science 317(5845):1756–1760

    Article  CAS  Google Scholar 

  • Gillan V, O’Neill K et al (2014) A repurposing strategy for Hsp90 inhibitors demonstrates their potency against filarial nematodes. PLoS Negl Trop Dis 8(2):e2699

    Article  Google Scholar 

  • Gyapong JO, Kumaraswami V et al (2005) Treatment strategies underpinning the global programme to eliminate lymphatic filariasis. Expert Opin Pharmacother 6(2):179–200

    Article  Google Scholar 

  • Hertig M, Wolbach SB (1924) Studies on rickettsia-like micro-organisms in insects. J Med Res 44(3):329–374 7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoerauf A, Specht S et al (2008) Wolbachia endobacteria depletion by doxycycline as antifilarial therapy has macrofilaricidal activity in onchocerciasis: a randomized placebo-controlled study. Med Microbiol Immunol 197(3):295–311

    Article  CAS  Google Scholar 

  • Johnston KL, Ford L et al (2014) Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis. Int J Parasitol Drugs Drug Resist 4(3):278–286

    Article  Google Scholar 

  • Kumar S, Chaudhary K et al (2007) Mining predicted essential genes of Brugia malayi for nematode drug targets. PLoS One 2(11):e1189

    Article  Google Scholar 

  • Kurniawan-Atmadja A, Sartono E et al (1998) Antibody responses to filarial infective larvae are not dominated by the IgG4 isotype. Parasite Immunol 20(1):9–17

    Article  CAS  Google Scholar 

  • Kushwaha S, Singh PK et al (2012) In vitro silencing of Brugia malayi trehalose-6-phosphate phosphatase impairs embryogenesis and in vivo development of infective larvae in jirds. PLoS Negl Trop Dis 6(8):e1770

    Article  CAS  Google Scholar 

  • Kushwaha S, Singh PK et al (2013) Immunization of Mastomys coucha with Brugia malayi recombinant trehalose-6-phosphate phosphatase results in significant protection against homologous challenge infection. PLoS One 8(8):e72585

    Article  CAS  Google Scholar 

  • Li Z, Carlow CK (2012) Characterization of transcription factors that regulate the type IV secretion system and riboflavin biosynthesis in Wolbachia of Brugia malayi. PLoS One 7(12):e51597

    Article  CAS  Google Scholar 

  • Li Z, Garner AL et al (2011) Targeting the Wolbachia cell division protein FtsZ as a new approach for antifilarial therapy. PLoS Negl Trop Dis 5(11):e1411

    Article  CAS  Google Scholar 

  • Lustigman S, Melnikow E et al (2014) Potential involvement of Brugia malayi cysteine proteases in the maintenance of the endosymbiotic relationship with Wolbachia. Int J Parasitol Drugs Drug Res 4(3):267–277

    Article  Google Scholar 

  • Maizels RM, Yazdanbakhsh M (2003) Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 3(9):733–744

    Article  CAS  Google Scholar 

  • Mand S, Pfarr K et al (2009) Macrofilaricidal activity and amelioration of lymphatic pathology in bancroftian filariasis after 3 weeks of doxycycline followed by single-dose diethylcarbamazine. Am J Trop Med Hyg 81(4):702–711

    Article  CAS  Google Scholar 

  • McCarthy J (2005) Is anthelmintic resistance a threat to the program to eliminate lymphatic filariasis? Am J Trop Med Hyg 73(2):232–233

    Article  Google Scholar 

  • McGarry HF, Egerton GL et al (2004) Population dynamics of Wolbachia bacterial endosymbionts in Brugia malayi. Mol Biochem Parasitol 135(1):57–67

    Article  CAS  Google Scholar 

  • Misra-Bhattacharya S, Katiyar D et al (2004) 4-Methyl-7-(tetradecanoyl)-2H-1-benzopyran-2-one: a novel DNA topoisomerase II inhibitor with adulticidal and embryostatic activity against sub-periodic Brugia malayi. Parasitol Res 92(3):177–182

    Article  Google Scholar 

  • Nag JK, Shrivastava N et al (2014) Wolbachia transcription elongation factor “WolGreA” interacts with α2ββ’σ subunits of RNA polymerase through its dimeric C-terminal domain. PLoS Negl Trop Dis 8(6):e2930

    Article  Google Scholar 

  • National Vector Borne Disease Control Programme (2014) Mass drug administration. Government of India. http://nvbdcp.gov.in/mda.html

  • Norman RA, Chan MS et al (2000) EPIFIL: the development of an age-structured model for describing the transmission dynamics and control of lymphatic filariasis. Epidemiol Infect 124(3):529–541

    Article  CAS  Google Scholar 

  • O’Connell EM, Bennuru S et al (2015) Targeting filarial Abl-like kinases: orally available, Food and Drug Administration-approved tyrosine kinase inhibitors are microfilaricidal and macrofilaricidal. J Infect Dis 212(5):684–693

    Article  Google Scholar 

  • Omura S, Crump A (2004) The life and times of ivermectin – a success story. Nat Rev Microbiol 2(12):984–989

    Article  CAS  Google Scholar 

  • Ottesen EA (1992) The Wellcome Trust Lecture. Infection and disease in lymphatic filariasis: an immunological perspective. Parasitology 104(Suppl):S71–S79

    Article  Google Scholar 

  • Ottesen EA, Weller PF et al (1982) Endemic filariasis on a Pacific Island. II. Immunologic aspects: immunoglobulin, complement, and specific antifilarial IgG, IgM, and IgE antibodies. Am J Trop Med Hyg 31(5):953–961

    Article  CAS  Google Scholar 

  • Panic G, Duthaler U et al (2014) Repurposing drugs for the treatment and control of helminth infections. Int J Parasitol Drugs Drug Resist 4(3):185–200

    Article  Google Scholar 

  • Pathak M, Verma M et al (2014) Wolbachia endosymbiont of Brugia malayi elicits a T helper type 17-mediated pro-inflammatory immune response through Wolbachia surface protein. Immunology 144(2):231–244

    Article  Google Scholar 

  • Plaisier AP, Stolk WA et al (2000) Effectiveness of annual ivermectin treatment for Wuchereria bancrofti infection. Parasitol Today 16(7):298–302

    Article  CAS  Google Scholar 

  • Prichard R, Menez C et al (2012) Moxidectin and the avermectins: Consanguinity but not identity. Int J Parasitol Drugs Drug Resist 2:134–153

    Article  Google Scholar 

  • Rana AK, Misra-Bhattacharya S (2013) Current drug targets for helminthic diseases. Parasitol Res 112(5):1819–1831

    Article  Google Scholar 

  • Rana AK, Chandra S et al (2013) Molecular characterization of an rsmD-like rRNA methyltransferase from the Wolbachia endosymbiont of Brugia malayi and antifilarial activity of specific inhibitors of the enzyme. Antimicrob Agents Chemother 57(8):3843–3856

    Article  CAS  Google Scholar 

  • Raverdy S, Foster JM et al (2008) The Wolbachia endosymbiont of Brugia malayi has an active pyruvate phosphate dikinase. Mol Biochem Parasitol 160(2):163–166

    Article  CAS  Google Scholar 

  • Schiefer A, Schmitz A et al (2012) Corallopyronin A specifically targets and depletes essential obligate Wolbachia endobacteria from filarial nematodes in vivo. J Infect Dis 206(2):249–257

    Article  CAS  Google Scholar 

  • Schiefer A, Vollmer V et al (2013) The ClpP peptidase of Wolbachia endobacteria is a novel target for drug development against filarial infections. J Antimicrob Chemother 68(8):1790–1800

    Article  CAS  Google Scholar 

  • Schwab AE, Boakye DA et al (2005) Detection of benzimidazole resistance-associated mutations in the filarial nematode Wuchereria bancrofti and evidence for selection by albendazole and ivermectin combination treatment. Am J Trop Med Hyg 73(2):234–238

    Article  CAS  Google Scholar 

  • Scott AL, Ghedin E (2009) The genome of Brugia malayi - all worms are not created equal. Parasitol Int 58(1):6–11

    Article  CAS  Google Scholar 

  • Serbus LR, Landmann F et al (2012) A cell-based screen reveals that the albendazole metabolite, albendazole sulfone, targets Wolbachia. PLoS Pathog 8(9):e1002922

    Article  CAS  Google Scholar 

  • Shahab M, Misra-Bhattacharya S (2012) Combating mosquito-borne lymphatic filariasis with genomics technologies: enabling novel drug discovery for neglected tropical diseases. Curr Pharmacogenomics Person Med 10:148–158

    Article  CAS  Google Scholar 

  • Shahab M, Verma M et al (2014) Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi. PLoS One 9(6):e99884

    Article  Google Scholar 

  • Shiny C, Krushna NS et al (2011) Recombinant Wolbachia heat shock protein 60 (HSP60) mediated immune responses in patients with lymphatic filariasis. Microbes Infect 13(14-15):1221–1231

    Article  CAS  Google Scholar 

  • Shoop WL, Mrozik H et al (1995) Structure and activity of avermectins and milbemycins in animal health. Vet Parasitol 59(2):139–156

    Article  CAS  Google Scholar 

  • Shrivastava N, Nag JK et al (2015) Homology modeling of NAD+-dependent DNA ligase of the Wolbachia endosymbiont of Brugia malayi and its drug target potential using dispiro-Cycloalkanones. Antimicrob Agents Chemother. 59(7):3736–3747

    Article  CAS  Google Scholar 

  • Singh M, Singh PK et al (2011a) RNAi mediated silencing of ATPase RNA helicase gene in adult filarial parasite Brugia malayi impairs in vitro microfilaria release and adult parasite viability. J Biotechnol 157(3):351–358

    Article  Google Scholar 

  • Singh PK, Ajay A et al (2011b) Towards novel antifilarial drugs: challenges and recent developments. Future Med Chem 2(2):251–283

    Article  Google Scholar 

  • Singh PK, Kushwaha S et al (2014) Cofactor independent phosphoglycerate mutase of Brugia malayi induces a mixed Th1/Th2 type immune response and inhibits larval development in the host. BioMed Res Int 2014(19):590281

    PubMed  PubMed Central  Google Scholar 

  • Slatko BE, Luck AN et al (2014) Wolbachia endosymbionts and human disease control. Mol Biochem Parasitol 195(2):88–95

    Article  CAS  Google Scholar 

  • Supali T, Djuardi Y et al (2008) Doxycycline treatment of Brugia malayi-infected persons reduces microfilaremia and adverse reactions after diethylcarbamazine and albendazole treatment. Clin Infect Dis 46(9):1385–1393

    Article  CAS  Google Scholar 

  • Taylor MJ (2003) Wolbachia in the inflammatory pathogenesis of human filariasis. Ann N Y Acad Sci 990:444–449

    Article  Google Scholar 

  • Taylor MJ, Hoerauf A (1999) Wolbachia bacteria of filarial nematodes. Parasitol Today 15(11):437–442

    Article  CAS  Google Scholar 

  • Taylor MJ, Bandi C et al (2000) Wolbachia bacteria of filarial nematodes: a target for control? Parasitol Today 16(5):179–180

    Article  CAS  Google Scholar 

  • Taylor MJ, Bandi C et al (2005) Wolbachia bacterial endosymbionts of filarial nematodes. Adv Parasitol 60:245–284

    Article  Google Scholar 

  • Taylor MJ, Hoerauf A et al (2010) Lymphatic filariasis and onchocerciasis. Lancet 376(9747):1175–1185

    Article  Google Scholar 

  • Taylor MJ, Hoerauf A et al (2013) Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis. Parasitology 141(1):119–127

    Article  Google Scholar 

  • Turner JD, Tendongfor N et al (2010) Macrofilaricidal activity after doxycycline only treatment of Onchocerca volvulus in an area of Loa loa co-endemicity: a randomized controlled trial. PLoS Negl Trop Dis 4(4):e660

    Article  Google Scholar 

  • Veerapathran A, Dakshinamoorthy G et al (2009) Evaluation of Wuchereria bancrofti GST as a vaccine candidate for lymphatic filariasis. PLoS Negl Trop Dis 3(6):e457

    Article  Google Scholar 

  • Verma M, Pathak M et al (2014) Moxidectin causes adult worm mortality of human lymphatic filarial parasite Brugia malayi in rodent models. Folia Parasitol 61(6):561–570

    Article  CAS  Google Scholar 

  • Weisblum B (1995) Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother 39(3):577–585

    Article  CAS  Google Scholar 

  • WHO (2010) Global programme to eliminate lymphatic filariasis. Progress report 2000–2009 and strategic plan 2010–2020 of the global programme to eliminate lymphatic filariasis: halfway towards eliminating lymphatic filariasis. WHO, Geneva

    Google Scholar 

  • WHO (2011a) Lymphatic filariasis. WHO, Geneva

    Google Scholar 

  • WHO (2011b) Position statement on managing morbidity and preventing disability in the global programme to eliminate lymphatic filariasis. WHO, Geneva

    Google Scholar 

  • WHO (2013) Lymphatic filariasis: managing morbidity and preventing disability: an aideme’moire for national programme managers. WHO, Geneva

    Google Scholar 

  • WHO (2014) Global programme to eliminate lymphatic filariasis: progress report, 2013. Wkly Epidemiol Rec 89:409–418

    Google Scholar 

  • Wolstenholme AJ, Fairweather I et al (2004) Drug resistance in veterinary helminths. Trends Parasitol 20(10):469–476

    Article  CAS  Google Scholar 

  • Wu B, Novelli J et al (2009) The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target. PLoS Negl Trop Dis 3(7):e475

    Article  Google Scholar 

  • Yu Z, Vodanovic-Jankovic S et al (2011) Tirandamycins from Streptomyces sp. 17944 inhibiting the parasite Brugia malayi asparagine tRNA synthetase. Org Lett 13(8):2034–2037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailja Misra-Bhattacharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Misra-Bhattacharya, S., Shahab, M. (2018). Progress in the Treatment and Control of Lymphatic Filariasis. In: Tyagi, B. (eds) Lymphatic Filariasis. Springer, Singapore. https://doi.org/10.1007/978-981-13-1391-2_4

Download citation

Publish with us

Policies and ethics