Overview of the Relationship Between Aluminum Exposure and Health of Human Being

  • Qiao NiuEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1091)


Aluminum is a type of ubiquitously existing naturally and widely used metal in our world. It is combined with other elements and forms different compounds. In different pH and due to other conditions, it can be released into ions of different valence states. Our century is an “aluminum age”; aluminum is used in many fields of our daily life, such as vaccine adjuvant, antacids, food additives, skin care products, cosmetics, and cooking wares, and may be as elements or contaminants appeared in a lot of foods, including infant formulae, milk products, juice, wine, sea foods, and tea. It also appears in drinking water due to the water treatment process, or naturally coming from weathering rocks and soils, or released from rocks and soils caused by pollution-induced acid rain. Due to good physical and chemical property, aluminum is being tremendously utilized in many industries. In a lot of production and process procedures, aluminum particulates are seriously exposed by workers. Many factors, such as silicon, citrate, iron, calcium, fluoride, etc., can affect absorption of aluminum in human body. Human being ingests aluminum through the respiratory and digestive system and skin. Aluminum can affect our health, especially impair central nervous system. The important damage is cognitive impairment in Al-exposed peoples, Alzheimer’s disease and other neurodegenerative disorders have been related with aluminum exposure, and aluminum has been proposed as etiology.


Aluminum Dietary intake Occupational exposure Adverse effect Cognitive impairment 


  1. 1.
    Al-Ashmawy MA (2011) Prevalence and public health significance of aluminum residues in milk and some dairy products. J Food Sci 76(3):T73–T76PubMedCrossRefGoogle Scholar
  2. 2.
    Amieva H, Le Goff M, Millet X, Orgogozo JM, Pérès K, Barberger-Gateau P, Jacqmin-Gadda H, Dartigues JF (2008) Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Ann Neurol 64(5):492–498PubMedCrossRefGoogle Scholar
  3. 3.
    Arnich N, Sirot V, Rivière G, Jean J, Noël L, Guérin T, Leblanc JC (2012) Dietary exposure to trace elements and health risk assessment in the 2nd French total diet study. Food Chem Toxicol 50(7):2432–2449PubMedCrossRefGoogle Scholar
  4. 4.
    ATSDR (Agency for Toxic Substances and Disease Registry) (1999) A toxicological profile for aluminum. U.S. Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  5. 5.
    Barberger-Gateau P, Chaslerie A, Dartigues JF, Commenges D, Gagnon M, Salamon R (1992) Health measures correlates in a French elderly community population: the PAQUID study. J Gerontol 47(2):S88–S95PubMedCrossRefGoogle Scholar
  6. 6.
    Barberger-Gateau P, Fabrigoule C, Helmer C, Rouch I, Dartigues JF (1999) Functional impairment in instrumental activities of daily living: an early clinical sign of dementia? J Am Geriatr Soc 47(4):456–462PubMedCrossRefGoogle Scholar
  7. 7.
    Bellés M, Sánchez DJ, Gómez M, Corbella J, Domingo JL (1998) Silicon reduces aluminum accumulation in rats: relevance to the aluminum hypothesis of Alzheimer disease. Alzheimer Dis Assoc Disord 12(2):83–87PubMedCrossRefGoogle Scholar
  8. 8.
    Bergomi M, Vinceti M, Nacci G, Pietrini V, Brätter P, Alber D, Ferrari A, Vescovi L, Guidetti D, Sola P, Malagu S, Aramini C, Vivoli G (2002) Environmental exposure to trace elements and risk of amyotrophic lateral sclerosis: a population-based case-control study. Environ Res 89(2):116–123PubMedCrossRefGoogle Scholar
  9. 9.
    Bishop NJ, Morley R, Day JP, Lucas A (1997) Aluminum neurotoxicity in preterm infants receiving intravenous-feeding solutions. N Engl J Med 336(22):1557–1561PubMedCrossRefGoogle Scholar
  10. 10.
    Braganca VL, Melnikov P, Zanoni LZ (2011) Trace elements in fruit juices. Biol Trace Elem Res 146:256–261PubMedCrossRefGoogle Scholar
  11. 11.
    Brusewitz S et al (1984) USIP-84-11, Aluminium. Stockholm Univ. Inst. Theor. Phys., Stockholm, 138pGoogle Scholar
  12. 12.
    Cao H, Qiao L, Zhang H, Chen J (2010) Exposure and risk assessment for aluminium and heavy metals in Puerh tea. Sci Total Environ 408(14):2777–2784PubMedCrossRefGoogle Scholar
  13. 13.
    Carney J, McAdams P, McCluskey J, Roggli VL (2016) Aluminum-induced pneumoconiosis confirmed by analytical scanning electron microscopy: a case report and review of the literature. Ultrastruct Pathol 40(3):155–158PubMedCrossRefGoogle Scholar
  14. 14.
    Dabeka R, Fouquet A, Belisle S, Turcotte S (2011) Lead, cadmium and aluminum in Canadian infant formulae, oral electrolytes and glucose solutions. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(6):744–753PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Dartigues JF, Gagnon M, Letenneur L, Barberger-Gateau P, Commenges D, Evaldre M, Salamon R (1992) Principal lifetime occupation and cognitive impairment in a French elderly cohort (Paquid). Am J Epidemiol 135(9):981–988PubMedCrossRefGoogle Scholar
  16. 16.
    Divine KK, Lewis JL, Grant PG, Bench G (1999) Quantitative particle-induced X-ray emission imaging of rat olfactory epithelium applied to the permeability of rat epithelium to inhaled aluminum. Chem Res Toxicol 12(7):575–581PubMedCrossRefGoogle Scholar
  17. 17.
    Dockery DW, Pope CA 3rd, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) An association between air pollution and mortality in six US cities. N Engl J Med 329(24):1753–1759PubMedCrossRefGoogle Scholar
  18. 18.
    Englert N (2004) Fine particles and human health – a review of epidemiological studies. Toxicol Lett 149(1–3):235–242. ReviewPubMedCrossRefGoogle Scholar
  19. 19.
    Eng PJ, Trainor TP, Brown GE Jr, Waychunas GA, Newville M, Sutton SR, Rivers ML (2000) Structure of the hydrated alpha-Al(2)O(3) (0001) surface. Science 288(5468):1029–1033PubMedCrossRefGoogle Scholar
  20. 20.
    Ferreira PC, Piai Kde A, Takayanagui AM, Segura-Muñoz SI (2008) Aluminum as a risk factor for Alzheimer’s disease. Rev Lat Am Enfermagem 16(1):151–157PubMedCrossRefGoogle Scholar
  21. 21.
    Flaten TP (2001) Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Res Bull 55(2):187–196. ReviewPubMedCrossRefGoogle Scholar
  22. 22.
    Flaten TP (1990) Geographical associations between aluminium in drinking water and death rates with dementia (including Alzheimer’s disease), Parkinson’s disease and amyotrophic lateral sclerosis in Norway. Environ Geochem Health 12:152–167PubMedCrossRefGoogle Scholar
  23. 23.
    Forbes WF, Agwani N (1994) A suggested mechanism for aluminum biotoxicity. J Theor Biol 171(2):207–214PubMedCrossRefGoogle Scholar
  24. 24.
    Forbes WF, Gentleman JF, Maxwell CJ (1995) Concerning the role of aluminum in causing dementia. Exp Gerontol 30(1):23–32PubMedCrossRefGoogle Scholar
  25. 25.
    Forbes WF, Hayward LM, Agwani N (1992) Aluminum and Alzheimer’s disease. CMAJ 146(9):1534PubMedPubMedCentralGoogle Scholar
  26. 26.
    Forbes WF, Hayward LM, Agwani N (1991) Dementia, aluminium, and fluoride. Lancet 338(8782–8783):1592–1593PubMedCrossRefGoogle Scholar
  27. 27.
    Forbes WF, Hill GB (1998) Is exposure to aluminum a risk factor for the development of Alzheimer disease? Yes. Arch Neurol 55(5):740–741PubMedCrossRefGoogle Scholar
  28. 28.
    Forbes WF, McLachlan DR (1996) Further thoughts on the aluminum-Alzheimer’s disease link. J Epidemiol Community Health 50(4):401–403PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Forster DP, Newens AJ, Kay DW, Edwardson JA (1995) Risk factors in clinically diagnosed presenile dementia of the Alzheimer type: a case-control study in northern England. J Epidemiol Community Health 49(3):253–258PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Frankowski M, Zioła-Frankowska A, Kurzyca I, Novotný K, Vaculovič T, Kanický V, Siepak M, Siepak J (2011) Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes. Environ Monit Assess 182(1–4):71–84PubMedCrossRefGoogle Scholar
  31. 31.
    Frecker MF (1991) Dementia in Newfoundland: identification of a geographical isolate? J Epidemiol Community Health 45(4):307–311PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    French P, Gardner MJ, Gunn AM (1989) Dietary aluminium and Alzheimer’s disease. Food Chem Toxicol 27(7):495–498PubMedCrossRefGoogle Scholar
  33. 33.
    Fulton B, Jaw S, Jeffery EH (1989) Bioavailability of aluminum from drinking water. Fundam Appl Toxicol 12(1):144–150PubMedCrossRefGoogle Scholar
  34. 34.
    Garruto RM, Fukatsu R, Yanagihara R, Gajdusek DC, Hook G, Fiori CE (1984) Imaging of calcium and aluminum in neurofibrillary tangle-bearing neurons in parkinsonism-dementia of Guam. Proc Natl Acad Sci U S A 81(6):1875–1879PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gauthier E, Fortier I, Courchesne F, Pepin P, Mortimer J, Gauvreau D (2000) Aluminum forms in drinking water and risk of Alzheimer’s disease. Environ Res 84(3):234–246PubMedCrossRefGoogle Scholar
  36. 36.
    Glynn AW, Sparén A, Danielsson LG, Sundström B, Jorhem L (2001) The influence of complexing agents on the solubility and absorption of aluminium in rats exposed to aluminium in water. Food Addit Contam 18(6):515–523PubMedCrossRefGoogle Scholar
  37. 37.
    Graves AB, White E, Koepsell TD, Reifler BV, van Belle G, Larson EB (1990) The association between aluminum-containing products and Alzheimer’s disease. J Clin Epidemiol 43(1):35–44PubMedCrossRefGoogle Scholar
  38. 38.
    Guerin T, Chekri R, Vastel C, Sirot V, Volatier J-L, Leblanc J-C, Noel L (2011) Determination of 20 trace elements in fish and other seafood from the French market. Food Chem 127:934–942PubMedCrossRefGoogle Scholar
  39. 39.
    Harris WR (1992) Equilibrium model for speciation of aluminum in serum. Clin Chem 38:1809–1818Google Scholar
  40. 40.
    He SC, Qiao N, Sheng W (2003) Neurobehavioral, autonomic nervous function and lymphocyte subsets among aluminum electrolytic workers. Int J Immunopathol Pharmacol 16(2):139–144PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Health Canada (2010) Aluminum chloride, aluminum nitrate, aluminum sulfate. Priority Substances List Assessment Report. Follow-up to the State of Science Report 2000. Environment Canada, Ottawa. Available at:
  42. 42.
    Hoflich BL, Weinbruch S, Theissmann R, Gorzawski H, Ebert M, Ortner HM, Skogstad A, Ellingsen DG, Drablos PA, Thomassen Y (2005) Characterization of individual aerosol particles in workroom air of aluminium smelter potrooms. J Environ Monit 7(5):419–424PubMedCrossRefGoogle Scholar
  43. 43.
    Ilyin A, Gromov A, An F, Faubert V, de Izarra C, Espagnscq A, Brunet L (2002) Characterization of aluminum powders I. Influence of renal impairment, chemical form, and serum protein binding on intravenous and oral aluminum kinetics in the rabbit. Toxicol Appl Pharmacol 1988 95(1):32–43Google Scholar
  44. 44.
    IPCS (International Programme on Chemical Safety) (1997) Aluminum. Environmental health criteria 194. World Health Organization, GenevaGoogle Scholar
  45. 45.
    Jinzhu Y, Qinli Z, Jin Y, Pan K, Jianjun H, Qiao N (2015) Aluminum and benzo[a]pyrene co-operate to induce neuronal apoptosis in vitro. J Toxicol Sci 40(3):365–373PubMedCrossRefGoogle Scholar
  46. 46.
    Kihira T, Yoshida S, Mitani K, Yasui M, Yase Y (1993) ALS in the Kii peninsula of Japan, with special reference to neurofibrillary tangles and aluminum. Neuropathology 13(2):125–136CrossRefGoogle Scholar
  47. 47.
    Kihira T, Kanno S, Miwa H, Okamoto K, Kondo T (2007) The role of exogenous risk factors in amyotrophic lateral sclerosis in Wakayama. Jpn Amyotroph Lateral Scler 8(3):150–156CrossRefGoogle Scholar
  48. 48.
    Kongerud J, Søyseth V (2014) Respiratory disorders in aluminum smelter workers. J Occup Environ Med 56(5 Suppl):S60–S70PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev 10(Suppl 1):1–269PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Li G, Zhao X, Wu S, Hua H, Wang Q, Zhang Z (2017) Dietary exposure to aluminium in the popular Chinese fried bread youtiao. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 11:1–8CrossRefGoogle Scholar
  51. 51.
    Liya Ge, Jianghong Jiang, Xiaoyan Wu (2009) Investigation on aluminum content in Youtiao in Wuhan. Spectr Instrum Anal Z1:61–64Google Scholar
  52. 52.
    L’vov BV, Polzik LK, Weinbruch S, Ellingsen DG, Thomassen Y (2005) Theoretical aspects of fluoride air contaminant formation in aluminium smelter potrooms. J Environ Monit 7(5):425–430PubMedCrossRefGoogle Scholar
  53. 53.
    Lu X, Liang R, Jia Z, Wang H, Pan B, Zhang Q, Niu Q (2014) Cognitive disorders and tau-protein expression among retired aluminum smelting workers. J Occup Environ Med 56(2):155–160PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Maitani T, Kubota H, Hori N, Yoshihira K, Takeda M (1994) Distribution and urinary excretion of aluminium injected with several organic acids into mice: relationship with chemical state in serum studied by the HPLC-ICP method. J Appl Toxicol 14(4):257–261PubMedCrossRefGoogle Scholar
  55. 55.
    Maltseva A, Serra C, Kogevinas M (2016) Cancer risk among workers of a secondary aluminium smelter. Occup Med (Lond) 66(5):412–414CrossRefGoogle Scholar
  56. 56.
    Markesbery WR, Ehmann WD, Alauddin M, Hossain TI (1984) Brain trace element concentrations in aging. Neurobiol Aging 5(1):19–28PubMedCrossRefGoogle Scholar
  57. 57.
    Martyn CN, Coggon DN, Inskip H, Lacey RF, Young WF (1997) Aluminum concentrations in drinking water and risk of Alzheimer’s disease. Epidemiology 8(3):281–286PubMedCrossRefGoogle Scholar
  58. 58.
    Martyn CN, Barker DJ, Osmond C, Harris EC, Edwardson JA, Lacey RF (1989) Geographical relation between Alzheimer’s disease and aluminum in drinking water. Lancet 1(8629):59–62PubMedCrossRefGoogle Scholar
  59. 59.
    McLachlan DR, Bergeron C, Smith JE, Boomer D, Rifat SL (1996) Risk for neuropathologically confirmed Alzheimer’s disease and residual aluminum in municipal drinking water employing weighted residential histories. Neurology 46(2):401–405PubMedCrossRefGoogle Scholar
  60. 60.
    Millour S, Noel L, Kadar A, Chekri R, Vastel CH, Sirot V et al (2011) Pb, Hg, Cd, As, Sb and Al levels in foodstuffs from the 2nd French total diet study. Food Chem 126:1787–1799PubMedCrossRefGoogle Scholar
  61. 61.
    Mizumoto Y, Iwata S, Sasajima K, Yoshida S, Yoshimasu F, Yase Y (1983) Determination of the Ca/P atomic ratio in the spinal cord of patients with amyotrophic lateral sclerosis by neutron activation and X-ray fluorescence analysis. Radioisotopes 32(11):551–554. JapanesePubMedCrossRefGoogle Scholar
  62. 62.
    Mussi I, Calzaferri G, Buratti M, Alessio L (1984) Behaviour of plasma and urinary aluminium levels in occupationally exposed subjects. Int Arch Occup Environ Health 54:155–161PubMedCrossRefGoogle Scholar
  63. 63.
    Nancy Chuchu, Bhavini Patel, Blaise Sebastian, Christopher Exley (2013) The aluminium content of infant formulas remains too high. BMC Pediatr 13:162–166PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Neri LC, Hewitt D (1991) Aluminium, Alzheimer’s disease, and drinking water. Lancet 338(8763):390PubMedCrossRefGoogle Scholar
  65. 65.
    Nieboer E, Thomassen Y, Chashchin V, Odland JØ (2005) Occupational exposure assessment of metals. J Environ Monit 7(5):412–415. ReviewPubMedGoogle Scholar
  66. 66.
    Nolte E, Beck E, Winklhofer C, Steinhausen C (2001) Compartmental model for aluminium biokinetics. Hum Exp Toxicol 20(2):111–117PubMedCrossRefGoogle Scholar
  67. 67.
    Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimer’s disease. Neurotoxicology 23(6):761–774PubMedCrossRefGoogle Scholar
  68. 68.
    Ohno K, Ishikawa K, Kurosawa Y, Matsui Y, Matsushita T, Magara Y (2010) Exposure assessment of metal intakes from drinking water relative to those from total diet in Japan. Water Sci Technol 62:2694–2701PubMedCrossRefGoogle Scholar
  69. 69.
    Ondreicka R, Ginter E, Kortus J (1967) Effect of increased doses of aluminum salts on the metabolism of experimental animals. Cesk Gastroenterol Vyz 21(1):40–51PubMedGoogle Scholar
  70. 70.
    Perl DP, Gajdusek DC, Garruto RM, Yanagihara RT, Gibbs CJ (1982) Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and Parkinsonism-dementia of Guam. Science 217(4564):1053–1055PubMedCrossRefGoogle Scholar
  71. 71.
    Perl DP, Pendlebury WW (1986) Aluminum neurotoxicity – potential role in the pathogenesis of neurofibrillary tangle formation. Can J Neurol Sci 13(4 Suppl):441–445PubMedCrossRefGoogle Scholar
  72. 72.
    Piccardo P, Yanagihara R, Garruto RM, Gibbs CJ Jr, Gajdusek DC (1988) Histochemical and X-ray microanalytical localization of aluminum in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Acta Neuropathol 77(1):1–4PubMedCrossRefGoogle Scholar
  73. 73.
    Powell JJ, Greenfield SM, Parkes HG, Nicholson JK, Thompson RP (1993) Gastro-intestinal availability of aluminium from tea. Food Chem Toxicol 31(6):449–454PubMedCrossRefGoogle Scholar
  74. 74.
    Powell JJ, Thompson RP (1993) The chemistry of aluminium in the gastrointestinal lumen and its uptake and absorption. Proc Nutr Soc 52(1):241–253PubMedCrossRefGoogle Scholar
  75. 75.
    Zhang QL, Li MQ, Ji JW, Gao FP, Bai R, Chen CY, Wang ZW, Zhang C, Niu Q (2011) In vivo toxicity of nano-alumina on mice neurobehavioral profiles and the potential mechanisms. Int J Immunopathol Pharmacol 24(1S):23–29Google Scholar
  76. 76.
    Ramírez-Altamirano Mde J, Fenton-Navarro P, Sivet-Chiñas E, Harp-Iturribarria Fde M, Martínez-Cruz R, Cruz PH, Cruz MM, Pérez-Campos E (2012) The relationship of aluminium and silver to neural tube defects; a case control. Iran J Pediatr 22(3):369–374PubMedGoogle Scholar
  77. 77.
    Rajasekaran K (2000) Effects of combined exposure to aluminium, ethanol on food intake, motor behaviour, a few biochemical parameters in pubertal rats. Environ Toxicol Pharmacol 9:25–30Google Scholar
  78. 78.
    Rossbach B, Buchta M, Csanády GA, Filser JG, Hilla W, Windorfer K, Stork J, Zschiesche W, Gefeller O, Pfahlberg A, Schaller KH, Egerer E, Escobar Pinzón LC, Letzel S (2006) Biological monitoring of welders exposed to aluminium. Toxicol Lett 162(2–3):239–245PubMedCrossRefGoogle Scholar
  79. 79.
    Santibáñez M, Bolumar F, García AM (2007) Occupational risk factors in Alzheimer’s disease: a review assessing the quality of published epidemiological studies. Occup Environ Med 64(11):723–732PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Sauvel C, Barberger-Gateau P, Dequae L, Letenneur L, Dartigues JF (1994) Factors associated with a 1-year development in the functional autonomy of elderly persons living at home. Rev Epidemiol Sante Publique 42(1):13–23. FrenchPubMedGoogle Scholar
  81. 81.
    Shimizu H, Mori T, Koyama M, Sekiya M, Ooami H (1994) A correlative study of the aluminum content and aging changes of the brain in non-demented elderly subjects. Nihon Ronen Igakkai Zasshi 31(12):950–960. JapanesePubMedCrossRefGoogle Scholar
  82. 82.
    Sjögren B, Lundberg I, Lidums V (1983) Aluminium in the blood and urine of industrially exposed workers. Br J Ind Med 40:301–304CrossRefGoogle Scholar
  83. 83.
    Stahl T, Taschan H, Brunn H (2011) Aluminium content of selected foods and food products. Environ Sci Eur 23:37–48CrossRefGoogle Scholar
  84. 84.
    Stitch SR (1957) Trace elements in human tissue. 1. A semi-quantitative spectrographic survey. Biochem J 67(1):97–103PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Tariba B (2011) Metals in wine-impact on wine quality and health outcomes. Biol Trace Elem Res 144:143–156PubMedCrossRefGoogle Scholar
  86. 86.
    Taneda M (1984) Effect of aluminum on rat brain. Enhancement by calcium deficiency. Hokkaido Igaky Zasshi 59(3):312–337Google Scholar
  87. 87.
    The Health and Population Planing Commission of China (2014, December 24) National Standard for Food Safety-food additives utilization standardGoogle Scholar
  88. 88.
    Thomassen Y, Koch W, Dunkhorst W, Ellingsen DG, Skaugset NP, Jordbekken L, Arne Drabløs P, Weinbruch S (2006) Ultrafine particles at workplaces of a primary aluminium smelter. J Environ Monit 8(1):127–133PubMedCrossRefGoogle Scholar
  89. 89.
    Traub RD, Rains TC, Garruto RM, Gajdusek DC, Gibbs CJ Jr (1981) Brain destruction alone does not elevate brain aluminum. Neurology 31(8):986–990PubMedCrossRefGoogle Scholar
  90. 90.
    Van der Voet GB, de Wolff FA (1987a) Intestinal absorption of aluminium in rats: effect of sodium. Arch Toxicol Suppl 11:231–235PubMedGoogle Scholar
  91. 91.
    Van der Voet GB, De Wolff FA (1987b) The effect of di- and trivalent iron on the intestinal absorption of aluminum in rats. Toxicol Appl Pharmacol 90(2):190–197PubMedCrossRefGoogle Scholar
  92. 92.
    Virk SA, Eslick GD (2015) Occupational exposure to aluminum and Alzheimer disease: a meta-analysis. J Occup Environ Med 57(8):893–896PubMedCrossRefGoogle Scholar
  93. 93.
    Wagner W (1999) Canadian minerals yearbook. Natural Resources Canada, OttawaGoogle Scholar
  94. 94.
    Walton J, Hams G, Wilcox D (1994) Bioavailability of Aluminium from drinking water: co-exposure with foods and beverages, Research Report No. 83. Urban Water Research Association of Australia, Melbourne Water Corporation, MelbourneGoogle Scholar
  95. 95.
    Wang W, Yang H, Wang X, Jiang J, Zhu W (2010) Effects of fulvic acid and humic acid on aluminum speciation in drinking water. J Environ Sci (China) 22(2):211–217CrossRefGoogle Scholar
  96. 96.
    Weidenhamer JD, Fitzpatrick MP, Biro AM, Kobunski PA, Hudson MR, Corbin RW, Gottesfeld P (2017) Metal exposures from aluminum cookware: an unrecognized public health risk in developing countries. Sci Total Environ 579:805–813PubMedCrossRefGoogle Scholar
  97. 97.
    Weinbruch S, Benker N, Koch W, Ebert M, Drablos PA, Skaugset NP et al (2010) Hygroscopic properties of the workroom aerosol in aluminium smelter potrooms: a case for transport of HF and SO2 into the lower airways. J Environ Monit 12:448–454PubMedCrossRefGoogle Scholar
  98. 98.
    Westberg HB, Seldén AI, Bellander T (2001) Exposure to chemical agents in Swedish aluminum foundries and aluminum remelting plants – a comprehensive survey. Appl Occup Environ Hyg 16(1):66–77PubMedCrossRefGoogle Scholar
  99. 99.
    Wettstein A, Aeppli J, Gautschi K, Peters M (1991) Failure to find a relationship between mnestic skills of octogenarians and aluminum in drinking water. Int Arch Occup Environ Health 63(2):97–103PubMedCrossRefGoogle Scholar
  100. 100.
    Wood DJ, Cooper C, Stevens J, Edwardson J (1988) Bone mass and dementia in hip fracture patients from areas with different aluminium concentrations in water supplies. Age Ageing 17(6):415–419PubMedCrossRefGoogle Scholar
  101. 101.
    Yase Y, Matsumoto N, Azuma K, Nakai Y, Shiraki H (1972) Amyotrophic lateral sclerosis. Association with schizophrenic symptoms and showing Alzheimer’s tangles. Arch Neurol 27(2):118–128PubMedCrossRefGoogle Scholar
  102. 102.
    Yasui M, Ota K (1992) Experimental and clinical studies on dysregulation of magnesium metabolism and the aetiopathogenesis of multiple sclerosis. Magnes Res 5(4):295–302PubMedGoogle Scholar
  103. 103.
    Yasui M, Yase Y, Ota K, Garruto RM (1991a) Aluminum deposition in the central nervous system of patients with amyotrophic lateral sclerosis from the Kii Peninsula of Japan. Neurotoxicology 12(3):615–620PubMedGoogle Scholar
  104. 104.
    Yasui M, Yase Y, Ota K, Mukoyama M, Adachi K (1991b) High aluminum deposition in the central nervous system of patients with amyotrophic lateral sclerosis from the Kii Peninsula, Japan: two case reports. Neurotoxicology 12(2):277–283PubMedGoogle Scholar
  105. 105.
    Yasui M, Ota K, Yoshida M (1997) Effects of low calcium and magnesium dietary intake on the central nervous system tissues of rats and calcium-magnesium related disorders in the amyotrophic lateral sclerosis focus in the Kii Peninsula of Japan. Magnes Res 10(1):39–50Google Scholar
  106. 106.
    Yokel RA (2013) Aluminum. In: Cabello A (ed) Encyclopedia of human nutrition, vol 1, 3rd edn. Academic, Waltham, pp 57–56CrossRefGoogle Scholar
  107. 107.
    Yokel RA, McNamara PJ (1985) Aluminum bioavailability and disposition in adult and immature rabbits. Toxicol Appl Pharmacol 77(2):344–352PubMedCrossRefGoogle Scholar
  108. 108.
    Yokel RA, McNamara PJ (1988) Influence of renal impairment, chemical form, and serum protein binding on intravenous and oral aluminum kinetics in the rabbit. Toxicol Appl Pharmacol 98(1):32–43PubMedCrossRefGoogle Scholar
  109. 109.
    Yokel RA Ei-Samragy Y (2012) Aluminum in food-the nature and contribution of food additives. In Tech:203–228. Available at Scholar
  110. 110.
    Yoshida S, Yoshimasu F, Yase Y, Kawai K, Iwata S (1980) Metal analysis in CNS tissue of ALS case – related to the high content of heavy metals in his drinking water (author’s transl). Rinsho Shinkeigaku 20(1):16–24PubMedGoogle Scholar
  111. 111.
    Yoshimasu F, Uebayashi Y, Yase Y, Iwata S, Sasajima K (1976) Studies on amyotrophic lateral sclerosis by neutron activation analysis. Folia Psychiatr Neurol Jpn 30(1):49–55PubMedGoogle Scholar
  112. 112.
    Yoshimasu F, Yasui M, Yase Y, Iwata S, Gajdusek DC, Gibbs CJ Jr, Chen KM (1980) Studies on amyotrophic lateral sclerosis by neutron activation analysis – 2. Comparative study of analytical results on Guam PD, Japanese ALS and Alzheimer disease cases. Folia Psychiatr Neurol Jpn 34(1):75–82PubMedGoogle Scholar
  113. 113.
    Yoshimasu F, Yasui M, Yoshida H, Yoshida S, Yase Y (1985) Metal studies on Alzheimer disease by neutron activation analysis. Rinsho Shinkeigaku 25(6):738–743. [Article in Japanese]PubMedGoogle Scholar
  114. 114.
    Zapatero MD, Garcia de Jalon A, Pascual F, Calvo ML, Escanero J, Marro A (1995) Serum aluminum levels in Alzheimer’s disease and other senile dementias. Biol Trace Elem Res 47(1–3):235–240PubMedCrossRefGoogle Scholar
  115. 115.
    Zhang JL, Liu GY (2007) Main resources of aluminum ingested by human body. Chin J Health Lab Technol 17(11):1934–1936Google Scholar
  116. 116.
    Zhang Q, Wang H, Ge C, Duncan J, He K, Adeosun SO, Xi H, Peng H, Niu Q (2017) Alumina at 50 and 13 nm nanoparticle sizes have potential genotoxicity. J Appl Toxicol 37(9):1053–1064PubMedCrossRefGoogle Scholar
  117. 117.
    Zhang Q, Xu L, Wang J, Sabbioni E, Piao L, Di Gioacchino M, Niu Q (2013) Lysosomes involved in the cellular toxicity of nano-alumina: combined effects of particle size and chemical composition. J Biol Regul Homeost Agents 27(2):365–375PubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Occupational Health, School of Public HealthShanxi Medical UniversityTaiyuanChina

Personalised recommendations