Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 514 Accesses

Abstract

Following the discovery of graphene, [1,2,3] two-dimensional (2D) materials have emerged as one of the most important research topics in condensed matter physics because of promising applications of these materials. [4,5,6] In particular, semiconducting layered materials, [7, 8] such as transition metal dichalcogenides (TMD), [9, 10] can complement graphene because of their intrinsic bandgaps. [11, 12] In particular, molybdenum disulfide (MoS2) is a layered semiconducting TMD and therefore exhibits a bandgap, [13, 14] and strong mechanical properties. [15] Moreover, unique physical properties, including spin-valley coupling and the layer dependence of the band structure in MoS2, have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  4. K.S. Novoselov, V.I. Falko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012)

    Article  ADS  Google Scholar 

  5. S.Z. Butler et al., ACS Nano. 7, 2898 (2013)

    Article  Google Scholar 

  6. X. Huang, X.Y. Qi, F. Boey, H. Zhang, Chem. Soc. Rev. 41, 666 (2012)

    Article  Google Scholar 

  7. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, A.K. Geim, Proc. Natl. Acad. Sci. USA. 102, 10451 (2005)

    Article  ADS  Google Scholar 

  8. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, V. Nicolosi, Science 331, 568 (2011)

    Article  ADS  Google Scholar 

  9. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    Article  ADS  Google Scholar 

  10. V. Podzorov, M.E. Gershenson, C. Kloc, R. Zeis, E. Bucher, Appl. Phys. Lett. 84, 3301 (2004)

    Article  ADS  Google Scholar 

  11. A.K. Geim, I.V. Grigorieva, Nature 499, 419 (2013)

    Article  Google Scholar 

  12. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  13. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  14. A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C.Y. Chim, G. Galli, F. Wang, Nano. Lett. 10, 1271 (2010)

    Article  ADS  Google Scholar 

  15. B.W.H. Baugher, H.O.H. Churchill, Y.F. Yang, P. Jarillo-Herrero, Nano. Lett. 13, 4212 (2013)

    Article  ADS  Google Scholar 

  16. B. Radisavljevic, A. Kis, Nat. Mater. 12, 815 (2013)

    Article  ADS  Google Scholar 

  17. A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agraït, G. Rubio-Bollinger, Adv. Mater. 24, 772 (2012)

    Article  Google Scholar 

  18. K.F. Mak, K. He, J. Shan, T.F. Heinz, Nat. Nanotechnol. 7, 494 (2012)

    Article  ADS  Google Scholar 

  19. D. Xiao, G.B. Liu, W.X. Feng, X.D. Xu, W. Yao, Phys. Rev. Lett. 108, 196802 (2012)

    Article  ADS  Google Scholar 

  20. H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Nat. Nanotechnol. 7, 490 (2012)

    Article  ADS  Google Scholar 

  21. Q. He, Z. Zeng, Z. Yin, H. Li, S. Wu, X. Huang, H. Zhang, Small 8, 2994 (2012)

    Article  Google Scholar 

  22. H. Li, Z. Yin, Q. He, H. Li, X. Huang, L. Gang, D. Wen Hui Fam, A. Ling Yoong Tok, Q. Zhang, H. Zhang, Small 8, 63 (2012)

    Article  Google Scholar 

  23. C.F. Zhu, Z.Y. Zeng, H. Li, F. Li, C.H. Fan, H. Zhang, J. Am. Chem. Soc. 135, 5998 (2013)

    Article  Google Scholar 

  24. B. Radisavljevic, M.B. Whitwick, A. Kis, ACS Nano. 5, 9934 (2011)

    Article  Google Scholar 

  25. H. Wang, Yu. Lili, Lee Yi-Hsien, S. Yumeng, H. Allen, L. Matthew Chin, L. Lain-Jong, D. Madan, K. Jing, P. Tomas, Nano Lett. 12, 4674 (2012)

    Article  ADS  Google Scholar 

  26. Z.Y. Yin, L. Hai, L. Hong, L. Jiang, S. Yumeng, S. Yinghui, L. Gang, Z. Qing, C. Xiaodong, Z. Hua, ACS Nano. 6, 74 (2012)

    Article  Google Scholar 

  27. H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, Nano Lett. 12, 3695 (2012)

    Article  ADS  Google Scholar 

  28. M. Buscema, M. Barkelid, V. Zwiller, H.S.J. van der Zant, G.A. Steele, A. Castellanos-Gomez, Nano. Lett. 13, 358 (2013)

    Article  ADS  Google Scholar 

  29. M. Fontana, T. Deppe, A.K. Boyd, M. Rinzan, A.Y. Liu, M. Paranjape, P. Barbara, Sci. Rep. 3 (2013)

    Google Scholar 

  30. K. Roy, M. Padmanabhan, S. Goswami, T.P. Sai, G. Ramalingam, S. Raghavan, A. Ghosh, Nat. Nanotechnol. 8, 826 (2013)

    Article  ADS  Google Scholar 

  31. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat Nanotechnol 8, 497 (2013)

    Article  ADS  Google Scholar 

  32. W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, L.-J. Li, Adv. Mater. 25, 3456 (2013)

    Article  Google Scholar 

  33. O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, A. Kis, Nat Nanotechnol. 8, 497 (2013)

    Article  ADS  Google Scholar 

  34. G. Cunningham, U. Khan, C. Backes, D. Hanlon, D. McCloskey, J.F. Donegan, J.N. Coleman, J. Mater. Chem. C. 1, 6899 (2013)

    Article  Google Scholar 

  35. K. Cho, T.Y. Kim, W. Park, J. Park, D. Kim, J. Jang, H. Jeong, S. Hong, T. Lee, Nanotechnol. 25, 155201 (2014)

    Article  ADS  Google Scholar 

  36. S. Ghatak, A.N. Pal, A. Ghosh, ACS Nano. 5, 7707 (2011)

    Article  Google Scholar 

  37. H. Qiu, T. Xu, Z. Wang, W. Ren, H. Nan, Z. Ni, Q. Chen, S. Yuan, F. Miao, F. Song, G. Long, Y. Shi, L. Sun, J. Wang, X. Wang, Nat. Commun. 4, 2642 (2013)

    Google Scholar 

  38. W. Zhu, T. Low, Y.-H. Lee, H. Wang, D.B. Farmer, J. Kong, F. Xia, P. Avouris, Nat. Commun. 5, 4458 (2014)

    Article  Google Scholar 

  39. S. Ghatak, A. Ghosh, Appl. Phys. Lett. 103, 122103 (2013)

    Article  ADS  Google Scholar 

  40. S.L. Li, K. Wakabayashi, Y. Xu, S. Nakaharai, K. Komatsu, W.W. Li, Y.F. Lin, A. Aparecido-Ferreira, K. Tsukagoshi, Nano Lett. 13, 3546 (2013)

    Article  ADS  Google Scholar 

  41. C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano. 4, 2695 (2010)

    Article  Google Scholar 

  42. H.-C. Cheng, R.-J. Shiue, C.-C. Tsai, W.-H. Wang, Y.-T. Chen, ACS Nano. 5, 2051 (2011)

    Article  Google Scholar 

  43. F.Y. Shih, S.Y. Chen, C.H. Liu, P.H. Ho, T.S. Wu, C.W. Chen, Y.F. Chen, W.H. Wang, AIP Adv. 4, 067129 (2014)

    Article  ADS  Google Scholar 

  44. C. Kyungjune, K. Tae-Young, P. Woanseo, P. Juhun, K. Dongku, J. Jingon, J. Hyunhak, H. Seunghun, L. Takhee, Nanotechnol. 25, 155201 (2014)

    Article  Google Scholar 

  45. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schuller, Appl. Phys. Lett. 99, 102109 (2011)

    Article  ADS  Google Scholar 

  46. D. Kozawa, R. Kumar, A. C., K.K. Amara, W. Zhao, S. Wang, M. Toh, R.M. Ribeiro, A.H. Castro Neto, K. Matsuda, G. Eda, Nat. Commun. 5, 4543 (2014)

    Google Scholar 

  47. H.X. Jiang, J.Y. Lin, Phys. Rev. Lett. 64, 2547 (1990)

    Article  ADS  Google Scholar 

  48. H.X. Jiang, J.Y. Lin, Phys. Rev. B 40, 10025 (1989)

    Article  ADS  Google Scholar 

  49. R.G. Palmer, D.L. Stein, E. Abrahams, P.W. Anderson, Phys. Rev. Lett. 53, 958 (1984)

    Article  ADS  Google Scholar 

  50. A.S. Dissanayake, S.X. Huang, H.X. Jiang, J.Y. Lin, Phys. Rev. B 44, 13343 (1991)

    Article  ADS  Google Scholar 

  51. H.X. Jiang, J.Y. Lin, Phys. Rev. Lett. 64, 2547 (1990)

    Article  ADS  Google Scholar 

  52. D.C. Johnston, Phys. Rev. B 74, 184430 (2006)

    Article  ADS  Google Scholar 

  53. C.P. Lu, G.H. Li, J.H. Mao, L.M. Wang, E.Y. Andrei, Nano Lett. 14, 4628 (2014)

    Article  ADS  Google Scholar 

  54. S. McDonnell, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, ACS Nano. 8, 2880 (2014)

    Article  Google Scholar 

  55. S. Ghatak, S. Mukherjee, M. Jain, D. Sarma, A. Ghosh, arXiv preprint arXiv:1403.3333 (2014)

  56. N. Scheuschner, O. Ochedowski, A.M. Kaulitz, R. Gillen, M. Schleberger, J. Maultzsch, Phys. Rev. B 89, 125406 (2014)

    Article  ADS  Google Scholar 

  57. S.-Y. Chen, P.-H. Ho, R.-J. Shiue, C.-W. Chen, W.-H. Wang, Nano Lett. 12, 964 (2012)

    Article  ADS  Google Scholar 

  58. C.-C. Wu, D. Jariwala, V.K. Sangwan, T.J. Marks, M.C. Hersam, L.J. Lauhon, J. Phys. Chem. Lett. 4, 2508 (2013)

    Article  Google Scholar 

  59. D.V. Lang, R.A. Logan, Phys. Rev. Lett. 39, 635 (1977)

    Article  ADS  Google Scholar 

  60. D.V. Lang, R.A. Logan, M. Jaros, Phys. Rev. B 19, 1015 (1979)

    Article  ADS  Google Scholar 

  61. H.J. Queisser, D.E. Theodorou, Phys. Rev. B 33, 4027 (1986)

    Article  ADS  Google Scholar 

  62. T.N. Theis, S.L. Wright, Appl. Phys. Lett. 48, 1374 (1986)

    Article  ADS  Google Scholar 

  63. R.J. Nelson, Appl. Phys. Lett. 31, 351 (1977)

    Article  ADS  Google Scholar 

  64. Y.C. Lee, J.L. Shen, K.W. Chen, W.Z. Lee, S.Y. Hu, K.K. Tiong, Y.S. Huang, J. Appl. Phys. 99, 063706 (2006)

    Article  ADS  Google Scholar 

  65. G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, F.P.G. de Arquer, F. Gatti, F.H.L. Koppens, Nat. Nanotechnol. 7, 363 (2012)

    Article  ADS  Google Scholar 

  66. S.-Y. Chen, Y.-Y. Lu, F.-Y. Shih, P.-H. Ho, Y.-F. Chen, C.-W. Chen, Y.-T. Chen, W.-H. Wang, Carbon 63, 23 (2013)

    Article  Google Scholar 

  67. S.T. Lo, O. Klochan, C.H. Liu, W.H. Wang, A.R. Hamilton, C.T. Liang, Nanotechnol. 25, 375201 (2014)

    Article  ADS  Google Scholar 

  68. M.M. Furchi, D.K. Polyushkin, A. Pospischil, T. Mueller, Nano Lett. 14, 6165 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hua Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, CH. (2018). Extrinsic Origin of Persistent Photoconductivity in Monolayer MoS2 Field Effect. In: Electrical and Optoelectronic Properties of the Nanodevices Composed of Two-Dimensional Materials. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-13-1355-4_6

Download citation

Publish with us

Policies and ethics