Identifying MicroRNA Markers From Expression Data: A Network Analysis Based Approach

  • Paramita BiswasEmail author
  • Anirban Mukhopadhyay
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 836)


The identification of biomarkers is very important to know the presence or severity of a particular disease state in the patient body. According to the latest studies on miRNAs and their behaviors, it is known to us that miRNAs involve in the regulation mechanism of several biological processes. Sometimes the abnormal change in miRNA expressions in different conditions may lead to malignant growth in tissues. In this article, our proposed approach not only helps to detect differentially coexpressed modules but also helps to identify biomarker candidates from those modules. The proposed algorithm uses the WCGNA software package to explore coexpression profiles of the miRNAs. The algorithm has been applied to existing miRNA datasets to point out the miRNA markers. Then, biological validation analysis has been performed for the obtained miRNA markers.


MicroRNA marker Microarray analysis Differentially coexpressed network Topological overlap Intramodular connectivity MiRNA-target interaction Carcinomas 


  1. 1.
    Abeel, T., Helleputte, T., Van de Peer, Y., Dupont, P., Saeys, Y.: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics 26(3), 392–398 (2009)CrossRefGoogle Scholar
  2. 2.
    Ambros, V.: The functions of animal micrornas. Nature 431(7006), 350–355 (2004)CrossRefGoogle Scholar
  3. 3.
    Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004)CrossRefGoogle Scholar
  4. 4.
    Barter, R.L., Schramm, S.J., Mann, G.J., Yang, Y.H.: Network-based biomarkers enhance classical approaches to prognostic gene expression signatures. BMC Syst. Biol. 8(4), S5 (2014)CrossRefGoogle Scholar
  5. 5.
    Bolstad, B.M., Irizarry, R.A., Astrand, M., Speed, T.P.: A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2), 185–193 (2003)CrossRefGoogle Scholar
  6. 6.
    Choi, J.K., Yu, U., Yoo, O.J., Kim, S.: Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 21(24), 4348–4355 (2005)CrossRefGoogle Scholar
  7. 7.
    Della Vittoria Scarpati, G.: Analysis of differential miRNA expression in primary tumor and stroma of colorectal cancer patients. BioMed Res. Int. 2014, 840921 (2014)CrossRefGoogle Scholar
  8. 8.
    Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)CrossRefGoogle Scholar
  9. 9.
    Fukushima, A.: DiffCorr: an R package to analyze and visualize differential correlations in biological networks. Gene 518(1), 209–214 (2013)CrossRefGoogle Scholar
  10. 10.
    Hsu, C.L., Juan, H.F., Huang, H.C.: Functional analysis and characterization of differential coexpression networks. Scientific Rep. 5, 13295 (2015)CrossRefGoogle Scholar
  11. 11.
    Langfelder, P., Horvath, S.: WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9(1), 559 (2008)CrossRefGoogle Scholar
  12. 12.
    Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the dynamic tree cut package for R. Bioinformatics 24(5), 719–720 (2008)CrossRefGoogle Scholar
  13. 13.
    Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A.: Microrna expression profiles classify human cancers. Nature 435(7043), 834–838 (2005)CrossRefGoogle Scholar
  14. 14.
    Mukhopadhyay, A., Maulik, U.: An SVM-wrapped multiobjective evolutionary feature selection approach for identifying cancer-microrna markers. IEEE Trans. NanoBioscience 12(4), 275–281 (2013)CrossRefGoogle Scholar
  15. 15.
    Ray, S., Chakraborty, S., Mukhopadhyay, A.: DCoSpect: a novel differentially coexpressed gene module detection algorithm using spectral clustering. In: Das, S., Pal, T., Kar, S., Satapathy, S.C., Mandal, J.K. (eds.) Proceedings of the 4th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA) 2015. AISC, vol. 404, pp. 69–77. Springer, New Delhi (2016). Scholar
  16. 16.
    Raza, K., Jaiswal, R.: Reconstruction and analysis of cancer-specific gene regulatory networks from gene expression profiles. Int. J. Bioinform. Biosci. (IJBB) 3(2), 25–34 (2013)Google Scholar
  17. 17.
    Sauter, E.R., Patel, N.: Body fluid micro(mi)RNAs as biomarkers for human cancer. J. Neuclic Acids Investig. 2(1), 1 (2011)CrossRefGoogle Scholar
  18. 18.
    Taguchi, Y., Murakami, Y.: Principal component analysis based feature extraction approach to identify circulating microrna biomarkers. PloS One 8(6), e66714 (2013)CrossRefGoogle Scholar
  19. 19.
    Tesson, B.M., Breitling, R., Jansen, R.C.: DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinform. 11(1), 497 (2010)CrossRefGoogle Scholar
  20. 20.
    Ye, Y., Godzik, A.: Comparative analysis of protein domain organization. Genome Res. 14(3), 343–353 (2004)CrossRefGoogle Scholar
  21. 21.
    Yip, A.M., Horvath, S.: Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8(1), 22 (2007)CrossRefGoogle Scholar
  22. 22.
    Zhang, B., Horvath, S.: A general framework for weighted gene co-expression network analysis. Stat. Appl. Genetics Mol. Biol. 4(1), 1–43 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of KalyaniKalyaniIndia

Personalised recommendations