Multi-functional Active Filter Design Using Three VDTAs

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 836)


This paper suggests a single-input multi-output (SIMO) multi-function current mode active filter design using three voltage differencing transconductance amplifiers (VDTAs) as an active element. The filter is realized in current-mode (CM) and delivers several filter operations such as HP, LP, BP, BR and AP filter functions with appropriate connections of input signal. The filter consists of three VDTAs and two capacitors, which are grounded. The significance of the suggested filter is that it provides electronic and independent controllability of filter parameters i.e. pole frequency (ωp) and Q-factor (Q). The filter design is analyzed using Virtuoso Analog Design Environment of Cadence.


VDTA Current-mode Universal filter SIMO 


  1. 1.
    Kilinc, S., Keskin, A.U., Cam, U.: Cascadable voltage-mode multifunction biquad employing single OTRA. Frequenz 61, 84–86 (2007)CrossRefGoogle Scholar
  2. 2.
    Shah, N.A., Quadri, M., Iqbal, S.Z.: CDTA based universal trans-admittance filter. Analog Integr. Circ. Sig. Process. 52, 65–69 (2007)CrossRefGoogle Scholar
  3. 3.
    Horng, J.W.: Voltage-mode universal bi-quadratic filter using two OTAs and two capacitors. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E86A, 411–413 (2003)Google Scholar
  4. 4.
    Tangsrirat, W., Jetsdaporn, S.: Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors. Microelectron. J. 45, 613–618 (2014)CrossRefGoogle Scholar
  5. 5.
    Pandey, N., Paul, S.K.: SIMO trans-admittance-mode active-C universal filter. J. Circ. Syst. 1, 54–58 (2010)CrossRefGoogle Scholar
  6. 6.
    Chen, H.P.: Universal voltage-mode filter using only plus-type DDCC’s. Analog Integr. Circ. Sig. Process. 50(2), 137–139 (2007)CrossRefGoogle Scholar
  7. 7.
    Horng, J.W.: High-input impedance voltage-mode universal biquadratic filter using three plus-type CCIIs. IEEE Trans. Circ. Syst. II: Analog Digit. Sig. Process. 48, 996–997 (2001)CrossRefGoogle Scholar
  8. 8.
    Pandey, R., Pandey, N., Singhal, N.: Single VDTA based dual mode single input multioutput biquad filter. J. Eng. 2016, 1–10 (2016)Google Scholar
  9. 9.
    Biolek, D., Senani, R., Biolkova, V., Kolka, Z.: Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4), 15–32 (2008)Google Scholar
  10. 10.
    Kumar, V., Mehra, R., Islam, A.: A 2.5 GHz low power, high-Q, reliable design of active bandpass filter. IEEE Trans. Device Mater. Reliab. 17(1), 229–244 (2017)CrossRefGoogle Scholar
  11. 11.
    Mehra, R., Kumar, V., Islam, A.: Floating active inductor based Class-C VCO with 8 digitally tuned sub-bands. AEU-Int. J. Electron. Commun. 83, 1–10 (2017)CrossRefGoogle Scholar
  12. 12.
    Arbel, A.F., Goldminz, L.: Output stage for current-mode feedback amplifiers, theory and applications. Analog Integr. Circ. Sig. Process. 2(3), 243–255 (1992)CrossRefGoogle Scholar
  13. 13.
    Satansup, J., Pukkalanun, T., Tangsrirat, W.: Electronically tunable single-input five-output voltage-mode universal filter using VDTAs and grounded passive elements. Circ. Syst. Sig. Process. 32(3), 945–957 (2013)CrossRefGoogle Scholar
  14. 14.
    Chamnanphai, V., Sa-ngiamvibool, W.: Electronically tunable SIMO mixed-mode universal filter using VDTAs. Przegląd Elektrotechniczny 1(3), 209–213 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ECEBIT, MesraRanchiIndia

Personalised recommendations