An Electronically-Tuneable VDTA Based Sinusoidal Oscillator

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 836)


This paper introduces an electronically-tuneable sinusoidal oscillator design utilizing VDTA as an active building block. The introduced design incorporates two VDTA blocks, two capacitors, one resistor and finds its suitability for fully integrated circuit applications. The condition for oscillation (CO) and frequency of oscillation \( \left( {\omega_{\text{OSC}} } \right) \) of the proposed oscillator design are electronic tuneable by varying the DC bias currents of VDTA. The oscillator design operates at a low voltage of ±1 V and consumes very low power of 2 mW. The frequency of oscillation of the proposed oscillator is evaluated to be 46 MHz. The simulation result confirms the theoretical prospects of the design. The oscillator design is analyzed using Virtuoso Analog design Environment of Cadence.


Condition for oscillation VDTA Sinusoidal oscillator Analog integrated circuit Frequency of oscillation 


  1. 1.
    Toumazou, C., Lidgey, F.J., Haigh, D.G.: Analogue IC Design: The Current-mode Approach. Peter Peregrinus, London (1990)Google Scholar
  2. 2.
    Jantakun, A., Jaikla, W.: Current-mode quadrature oscillator based on CCCDTAs with noninteractive dual-current control for both condition of oscillation and frequency of oscillation. Turk. J. Electr. Eng. Comput. Sci. 21, 81–89 (2013)Google Scholar
  3. 3.
    Biolek, D., Lahiri, A., Jaikla, W., Siripruchayanun, M., Bajer, J.: Realization of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA. Microelectron. J. 42, 1116–1123 (2011)CrossRefGoogle Scholar
  4. 4.
    Šotner, R., Hrubos, Z., Slezak, J., Dostal, T.: Simply adjustable sinusoidal oscillator based on negative three-port current conveyors. Radioengineering 19, 446–453 (2010)Google Scholar
  5. 5.
    Iqbal, A., Parveen, B., Muslim, T.A.: First order current mode filters and multiphase sinusoidal oscillator using CMOS MOCCIIs. Arab. J. Sci. Eng. 32, 119–126 (2007)Google Scholar
  6. 6.
    Senani, R.: New types of sine wave oscillators. IEEE Trans. Instrum. Meas. 34(3), 461–463 (1985)CrossRefGoogle Scholar
  7. 7.
    Senani, R., Bhaskar, D.R.: Single op-amp sinusoidal oscillators suitable for generation of very low frequencies. IEEE Trans. Instrum. Meas. 40(4), 777–779 (1991)CrossRefGoogle Scholar
  8. 8.
    Chandee, S., Jaikla, W., Suwanjan, P., Pookrongtong, N., Kwawsibsam, A.: New quadrature sinusoidal oscillator with amplitude controllability. In: The 4th Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (JICTEE), Chiang Rai, pp. 1–4 (2014)Google Scholar
  9. 9.
    Pourak, T., Suwanjan, P., Jaikla, W., Maneewan, S.: Simple quadrature sinusoidal oscillator with orthogonal control using sigle active element. In: 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC), Bangkok, pp. 1–4 (2012)Google Scholar
  10. 10.
    Kumar, V., Mehra, R., Islam, A.: A CMOS active inductor based digital and analog dual tuned voltage-controlled oscillator. Microsyst. Technol. 1–13 (2017).
  11. 11.
    Tangsrirat, W.: Compact quadrature oscillator with voltage and current outputs using only single VDTA and grounded capacitors. Indian J. Pure Appl. Phys. 55(4), 254–260 (2017)Google Scholar
  12. 12.
    Mehra, R., Kumar, V., Islam, A.: Floating active inductor based Class-C VCO with 8 digitally tuned sub-bands. AEU- Int. J. Electron. Commun. 83, 1–10 (2017)CrossRefGoogle Scholar
  13. 13.
    Horng, J.W., Hou, C.L., Chang, C.M., Chung, W.Y., Tang, H.W., Wen, Y.H.: Quadrature oscillator using CCIIs. Int. J. Electron. 92(1), 21–31 (2005)CrossRefGoogle Scholar
  14. 14.
    Horng, J.W.: Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Indian J. Pure Appl. Phys. 49, 494–498 (2011)Google Scholar
  15. 15.
    Maheshwari, S., Khan, I.A.: Current controlled third order quadrature oscillator. IEEE Proc. Circuits Devices Syst. 152(6), 605–607 (2005)CrossRefGoogle Scholar
  16. 16.
    Maheshwari, S.: Current-mode third-order quadrature oscillator. IET Cricuits Devices Syst. 4(3), 188–195 (2010)CrossRefGoogle Scholar
  17. 17.
    Yesil, A., Kacar, F., Kuntman, H.: New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering 20(3), 632–637 (2011)Google Scholar
  18. 18.
    Mehra, R., Kumar, V., Islam, A., Kaushik, B.K.: Variation-aware widely tunable nanoscale design of CMOS active inductor-based RF bandpass filter. Int. J. Circ. Theor. Appl. 45(12), 2181–2200 (2017).
  19. 19.
    Kumar, V., Mehra, R., Islam, A.: A 2.5 GHz low power, high-Q, reliable design of active bandpass filter. IEEE Trans. Device Mater. Reliab. 17(1), 229–244 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringBirla Institute of Technology, MesraRanchiIndia

Personalised recommendations