Abdullah B, Ghani NAA, Vo D-VN (2017) Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185. https://doi.org/10.1016/j.jclepro.2017.05.176
CAS
CrossRef
Google Scholar
Bahari MB, Phuc NHH, Abdullah B, Alenazey F, Vo D-VN (2016) Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst. J Environ Chem Eng 4:4830–4838. https://doi.org/10.1016/j.jece.2016.01.038
CAS
CrossRef
Google Scholar
Bahari MB, Phuc NHH, Alenazey F, Vu KB, Ainirazali N, Vo D-VN (2017) Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol. Catal Today 291:67–75. https://doi.org/10.1016/j.cattod.2017.02.019
CAS
CrossRef
Google Scholar
Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60. https://doi.org/10.1016/S0926-860X(00)00843-7
CAS
CrossRef
Google Scholar
Bartholomew CH, Farrauto RJ (2005) Fundamentals of industrial catalytic processes, 2nd edn. Wiley, New York, pp 151–152
CrossRef
Google Scholar
Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2003) Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. J Power Sources 124:99–103. https://doi.org/10.1016/S0378-7753(03)00599-8
CAS
CrossRef
Google Scholar
Bellido JDA, Tanabe EY, Assaf EM (2009) Carbon dioxide reforming of ethanol over Ni/Y2O3–ZrO2 catalysts. Appl Catal B Environ 90:485–488. https://doi.org/10.1016/j.apcatb.2009.04.009
CAS
CrossRef
Google Scholar
Bimbela F, Ábrego J, Puerta R, García L, Arauzo J (2017) Catalytic steam reforming of the aqueous fraction of bio-oil using Ni-Ce/Mg-Al catalysts. Appl Catal B Environ 209:346–357. https://doi.org/10.1016/j.apcatb.2017.03.009
CAS
CrossRef
Google Scholar
Budiman AW, Song SH, Chang TS, Shin CH, Choi MJ (2012) Dry reforming of methane over cobalt catalysts: a literature review of catalyst development. Catal Surv Jpn 16:183–197. https://doi.org/10.1007/s10563-012-9143-2
CAS
CrossRef
Google Scholar
Chen L, Zhu Q, Hao Z, Zhang T, Xie Z (2010) Development of a Co–Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative CO2 reforming in a magnetic assisted fluidized bed. Int J Hydrogen Energy 35:8494–8502. https://doi.org/10.1016/j.ijhydene.2010.06.003
CAS
CrossRef
Google Scholar
Cheng CK, Foo SY, Adesina AA (2010) H2-rich synthesis gas production over Co/Al2O3 catalyst via glycerol steam reforming. Catal Commun 12:292–298. https://doi.org/10.1016/j.catcom.2010.09.018
CAS
CrossRef
Google Scholar
Cooper CG, Nguyen TH, Lee YJ, Hardiman KM, Safinski T, Lucien FP, Adesina AA (2008) Alumina-supported cobalt-molybdenum catalyst for slurry phase Fischer-Tropsch synthesis. Catal Today 131:255–261. https://doi.org/10.1016/j.cattod.2007.10.056
CAS
CrossRef
Google Scholar
da Silva AM, de Souza KR, Jacobs G, Graham UM, Davis BH, Mattos LV, Noronha FB (2011) Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst. Appl Catal B Environ 102:94–109. https://doi.org/10.1016/j.apcatb.2010.11.030
CAS
CrossRef
Google Scholar
da Silva ALM, den Breejen JP, Mattos LV, Bitter JH, de Jong KP, Noronha FB (2014) Cobalt particle size effects on catalytic performance for ethanol steam reforming – smaller is better. J Catal 318:67–74. https://doi.org/10.1016/j.jcat.2014.07.020
CAS
CrossRef
Google Scholar
Drif A, Bion N, Brahmi R, Ojala S, Pirault-Roy L, Turpeinen E, Seelam PK, Keiski RL, Epron F (2015) Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. Appl Catal A Gen 504:576–584. https://doi.org/10.1016/j.apcata.2015.02.019
CAS
CrossRef
Google Scholar
e Santos MAF, Lôbo IP, da Cruz RS (2014) Synthesis and characterization of Novel ZrO2-SiO2 mixed oxides. Mater Res 17:700–707. https://doi.org/10.1590/S1516-14392014005000046
CAS
CrossRef
Google Scholar
Fayaz F, Danh HT, Nguyen-Huy C, Vu KB, Abdullah B, Vo D-VN (2016) Promotional effect of Ce-dopant on Al2O3-supported Co catalysts for syngas production via CO2 reforming of ethanol. Procedia Eng 148:646–653. https://doi.org/10.1016/j.proeng.2016.06.530
CAS
CrossRef
Google Scholar
Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condens Matter 61:14095–14107. https://doi.org/10.1103/PhysRevB.61.14095
CAS
CrossRef
Google Scholar
Firoozi M, Baghalha M, Asadi M (2009) The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catal Commun 10:1582–1585. https://doi.org/10.1016/j.catcom.2009.04.021
CAS
CrossRef
Google Scholar
Foo SY, Cheng CK, Nguyen TH, Adesina AA (2011) Evaluation of lanthanide-group promoters on Co-Ni/Al2O3 catalysts for CH4 dry reforming. J Mol Catal A Chem 344:28–36. https://doi.org/10.1016/j.molcata.2011.04.018
CAS
CrossRef
Google Scholar
Homsi D, Aouad S, Gennequin C, Aboukaïs A, Abi-Aad E (2014) A highly reactive and stable Ru/Co6-xMgxAl2 catalyst for hydrogen production via methane steam reforming. Int J Hydrogen Energy 39:10101–10107. https://doi.org/10.1016/j.ijhydene.2014.04.151
CAS
CrossRef
Google Scholar
Hou T, Zhang S, Chen Y, Wang D, Cai W (2015) Hydrogen production from ethanol reforming: catalysts and reaction mechanism. Renew Sust Energ Rev 44:132–148. https://doi.org/10.1016/j.rser.2014.12.023
CAS
CrossRef
Google Scholar
Hu X, Lu H (2009) Syngas production by CO2 reforming of ethanol over Ni/Al2O3 catalyst. Catal Commun 10:1633–1637. https://doi.org/10.1016/j.catcom.2009.04.030
CAS
CrossRef
Google Scholar
Hull S, Trawczynski J (2014) Steam reforming of ethanol on zinc containing catalysts with spinel structure. Int J Hydrogen Energy 39:4259–4265. https://doi.org/10.1016/j.ijhydene.2013.12.184
CAS
CrossRef
Google Scholar
Jabbour K, Hassan NE, Casale S, Estephane J, Zakhem HE (2014) Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane. Int J Hydrogen Energy 39:7780–7787. https://doi.org/10.1016/j.ijhydene.2014.03.040
CAS
CrossRef
Google Scholar
Jankhah S, Abatzoglou N, Gitzhofer F (2008) Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments’ production. Int J Hydrogen Energy 33:4769–4779. https://doi.org/10.1016/j.ijhydene.2008.06.058
CAS
CrossRef
Google Scholar
JCPDS Powder Diffraction File, International Centre for Diffraction Data (2000) Swarthmore
Google Scholar
Kumar A, Bhosale RR, Malik SS, Abusrafa AE, Saleh MAH, Ghosh UK, Al-Marri MJ, Almomani FA, Khader MM, Abu-Reesh IM (2016) Thermodynamic investigation of hydrogen enrichment and carbon suppression using chemical additives in ethanol dry reforming. Int J Hydrogen Energy 41:15149–15157. https://doi.org/10.1016/j.ijhydene.2016.06.157
CAS
CrossRef
Google Scholar
Maia TA, Assaf JM, Assaf EM (2014) Study of Co/CeO2-γ-Al2O3 catalysts for steam and oxidative reforming of ethanol for hydrogen production. Fuel Process Technol 128:134–145. https://doi.org/10.1016/j.fuproc.2014.07.009
CAS
CrossRef
Google Scholar
Manfro RL, Da Costa AF, Ribeiro NFP, Souza MMVM (2011) Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2. Fuel Process Technol 92:330–335. https://doi.org/10.1016/j.fuproc.2010.09.024
CAS
CrossRef
Google Scholar
Mazumder J, de Lasa H (2014) Fluidizable Ni/La2O3-γAl2O3 catalyst for steam gasification of a cellulosic biomass surrogate. Appl Catal B Environ 160–161:67–79. https://doi.org/10.1016/j.apcatb.2014.04.042
CAS
CrossRef
Google Scholar
Montini T, Singh R, Das P, Lorenzut B, Bertero N, Riello P, Benedetti A, Giambastiani G, Bianchini C, Zinoviev S, Miertus S, Fornasiero P (2010) Renewable H2 from glycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts. ChemSusChem 3:619–628. https://doi.org/10.1002/cssc.200900243
CAS
CrossRef
PubMed
Google Scholar
Moraes TS, Neto RCR, Ribeiro MC, Mattos LV, Kourtelesis M, Verykios X, Noronha FB (2015) Effects of ceria morphology on catalytic performance of Ni/CeO2 catalysts for low temperature steam reforming of ethanol. Top Catal 58:281–294. https://doi.org/10.1007/s11244-015-0369-x
CAS
CrossRef
Google Scholar
Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK (2017) Insights on pathways for hydrogen generation from ethanol. Sustain Energy Fuels 1:1232–1245. https://doi.org/10.1039/C7SE00212B
CAS
CrossRef
Google Scholar
Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrogen Energy 32:3238–3247. https://doi.org/10.1016/j.ijhydene.2007.04.038
CAS
CrossRef
Google Scholar
Ogo S, Shimizu T, Nakazawa Y, Mukawa K, Mukai D, Sekine Y (2015) Steam reforming of ethanol over K promoted Co catalyst. Appl Catal A Gen 495:30–38. https://doi.org/10.1016/j.apcata.2015.01.018
CAS
CrossRef
Google Scholar
Omoregbe O, Danh HT, Nguyen-Huy C, Setiabudi HD, Abidin SZ, Truong QD, Vo D-VN (2017) Syngas production from methane dry reforming over Ni/SBA-15 catalyst: effect of operating parameters. Int J Hydrogen Energy 42:11283–11294. https://doi.org/10.1016/j.ijhydene.2017.03.146
CAS
CrossRef
Google Scholar
Osorio-Vargas P, Flores-González NA, Navarro RM, Fierro JLG, Campos CH, Reyes P (2016) Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction. Catal Today 259:27–38. https://doi.org/10.1016/j.cattod.2015.04.037
CAS
CrossRef
Google Scholar
Papageridis KN, Siakavelas G, Charisiou ND, Avraam DG, Tzounis L, Kousi K, Goula MA (2016) Comparative study of Ni, Co, Cu supported on γ-alumina catalysts for hydrogen production via the glycerol steam reforming reaction. Fuel Process Technol 152:156–175. https://doi.org/10.1016/j.fuproc.2016.06.024
CAS
CrossRef
Google Scholar
Patterson AL (1939) The Scherrer formula for I-Ray particle size determination. Phys Rev 56:978–982. https://doi.org/10.1103/PhysRev.56.978
CAS
CrossRef
Google Scholar
Shahirah MNN, Gimbun J, Ideris A, Khan MR, Cheng CK (2017) Catalytic pyrolysis of glycerol into syngas over ceria-promoted Ni/α-Al2O3 catalyst. Renew Energy 107:223–234. https://doi.org/10.1016/j.renene.2017.02.002
CAS
CrossRef
Google Scholar
Sharma A, Saito I, Nakagawa H, Miura K (2007) Effect of carbonization temperature on the nickel crystallite size of a Ni/C catalyst for catalytic hydrothermal gasification of organic compounds. Fuel 86:915–920. https://doi.org/10.1016/j.fuel.2006.11.001
CAS
CrossRef
Google Scholar
Srisiriwat N, Therdthianwong S, Therdthianwong A (2009) Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2–ZrO2. Int J Hydrogen Energy 34:2224–2234. https://doi.org/10.1016/j.ijhydene.2008.12.058
CAS
CrossRef
Google Scholar
Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: influence of process parameters – a review. Renew Sust Energ 45:710–744. https://doi.org/10.1016/j.rser.2015.02.026
CAS
CrossRef
Google Scholar
Venvik HJ, Yang J (2017) Catalysis in microstructured reactors: short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products. Catal Today 285:135–146. https://doi.org/10.1016/j.cattod.2017.02.014
CAS
CrossRef
Google Scholar
Vicente J, Montero C, Ereña J, Azkoiti MJ, Bilbao J, Gayubo AG (2014) Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor. Int J Hydrogen Energy 39:12586–12596. https://doi.org/10.1016/j.ijhydene.2014.06.093
CAS
CrossRef
Google Scholar
Vo D-VN, Adesina AA (2012) A potassium-promoted Mo carbide catalyst system for hydrocarbon synthesis. Cat Sci Technol 2:2066. https://doi.org/10.1039/c2cy20385e
CAS
CrossRef
Google Scholar
Wang W, Wang Y (2009) Dry reforming of ethanol for hydrogen production: thermodynamic investigation. Int J Hydrogen Energy 34:5382–5389. https://doi.org/10.1016/j.ijhydene.2009.04.054
CAS
CrossRef
Google Scholar
Wu Z-Y, Chen P, Wu Q-S, Yang L-F, Pan Z, Wang Q (2014) Co/Co3O4/C-N a novel nanostructure and excellent catalytic system for the oxygen reduction reaction. Nano Energy 8:118–125. https://doi.org/10.1016/j.nanoen.2014.05.019
CAS
CrossRef
Google Scholar
Yang R, Xing C, Lv C, Shi L, Tsubaki N (2010) Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Appl Catal A Gen 385:92–100. https://doi.org/10.1016/j.apcata.2010.06.050
CAS
CrossRef
Google Scholar
Yang J, Ma W, Chen D, Holmen A, Davis BH (2014) Fischer–Tropsch synthesis: a review of the effect of CO conversion on methane selectivity. Appl Catal A Gen 470:250–260. https://doi.org/10.1016/j.apcata.2013.10.061
CAS
CrossRef
Google Scholar
Zawadzki A, Bellido JDA, Lucrédio AF, Assaf EM (2014) Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Process Technol 128:432–440. https://doi.org/10.1016/j.fuproc.2014.08.006
CAS
CrossRef
Google Scholar
Zhang W, Burckle EC, Smirniotis PG (1999) Characterization of the acidity of ultrastable Y, mordenite, and ZSM-12 via NH3-stepwise temperature programmed desorption and Fourier transform infrared spectroscopy. Microporous Mesoporous Mater 33:173–185. https://doi.org/10.1016/S1387-1811(99)00136-5
CAS
CrossRef
Google Scholar
Zhao S, Cai W, Li Y, Yu H, Zhang S, Cui L (2017) Syngas production from ethanol dry reforming over Rh/CeO2 catalyst. J Saudi Chem Soc. https://doi.org/10.1016/j.jscs.2017.07.003
CAS
CrossRef
Google Scholar
Zhi G, Guo X, Wang Y, Jin G, Guo X (2011) Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide. Catal Commun 16:56–59. https://doi.org/10.1016/j.catcom.2011.08.037
CAS
CrossRef
Google Scholar