Advertisement

Hydrogen-Rich Syngas Production via Ethanol Dry Reforming over Rare-Earth Metal-Promoted Co-based Catalysts

  • Fahim Fayaz
  • Mahadi B. Bahari
  • Thong L. M. Pham
  • Chinh Nguyen-Huy
  • Herma Dina Setiabudi
  • Bawadi Abdullah
  • Dai-Viet N. VoEmail author
Chapter

Abstract

This chapter is the synopsis of the recent investigation on hydrogen-rich syngas generation using ethanol dry reforming approach over rare-earth metal-supported cobalt catalysts. Ce- and La-promoted and unpromoted 10%Co/Al2O3 catalysts were synthesized by co-impregnation technique and were characterized using a wide range of methods, namely, Brunauer-Emmett-Teller (BET) surface area, X-ray diffraction (XRD) measurement, temperature-programmed oxidation (TPO), H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD) and Raman spectroscopy measurements. The influence of operating conditions including varying CO2:C2H5OH ratios from 2.5:1 to 1:2.5 and reaction temperature range of 923–973 K was also investigated in this chapter. The addition of both CeO2 and La2O3 promoters facilitated the H2 reduction, enhanced the basic property of catalysts and improved active metal dispersion. Regardless of reaction temperature and reactant composition, La-promoted catalyst exhibited the highest C2H5OH and CO2 conversions followed by Ce-promoted and unpromoted catalysts. The increment of CO2 partial pressure from 20 to 50 kPa enhanced C2H5OH and CO2 conversions by up to 20.0% and 27.4%, respectively. However, reactant conversions significantly declined with growing C2H5OH partial pressure from 20 to 50 kPa. La and Ce addition hindered carbon deposition on catalyst surface during ethanol dry reforming reaction, and the amount of carbon deposition declined from 51.49% to 30.06% with the addition of La.

Keywords

Ethanol dry reforming Co-based catalysts Syngas Hydrogen Rare-earth promoter 

Notes

Acknowledgements

The authors are grateful for the financial support from UMP Research Grant Scheme (RDU160323) for conducting this research. Fahim Fayaz is also thankful for the Graduate Research Scheme Award (GRS) from Universiti Malaysia Pahang (UMP).

References

  1. Abdullah B, Ghani NAA, Vo D-VN (2017) Recent advances in dry reforming of methane over Ni-based catalysts. J Clean Prod 162:170–185.  https://doi.org/10.1016/j.jclepro.2017.05.176 CrossRefGoogle Scholar
  2. Bahari MB, Phuc NHH, Abdullah B, Alenazey F, Vo D-VN (2016) Ethanol dry reforming for syngas production over Ce-promoted Ni/Al2O3 catalyst. J Environ Chem Eng 4:4830–4838.  https://doi.org/10.1016/j.jece.2016.01.038 CrossRefGoogle Scholar
  3. Bahari MB, Phuc NHH, Alenazey F, Vu KB, Ainirazali N, Vo D-VN (2017) Catalytic performance of La-Ni/Al2O3 catalyst for CO2 reforming of ethanol. Catal Today 291:67–75.  https://doi.org/10.1016/j.cattod.2017.02.019 CrossRefGoogle Scholar
  4. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A Gen 212:17–60.  https://doi.org/10.1016/S0926-860X(00)00843-7 CrossRefGoogle Scholar
  5. Bartholomew CH, Farrauto RJ (2005) Fundamentals of industrial catalytic processes, 2nd edn. Wiley, New York, pp 151–152CrossRefGoogle Scholar
  6. Batista MS, Santos RKS, Assaf EM, Assaf JM, Ticianelli EA (2003) Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. J Power Sources 124:99–103.  https://doi.org/10.1016/S0378-7753(03)00599-8 CrossRefGoogle Scholar
  7. Bellido JDA, Tanabe EY, Assaf EM (2009) Carbon dioxide reforming of ethanol over Ni/Y2O3–ZrO2 catalysts. Appl Catal B Environ 90:485–488.  https://doi.org/10.1016/j.apcatb.2009.04.009 CrossRefGoogle Scholar
  8. Bimbela F, Ábrego J, Puerta R, García L, Arauzo J (2017) Catalytic steam reforming of the aqueous fraction of bio-oil using Ni-Ce/Mg-Al catalysts. Appl Catal B Environ 209:346–357.  https://doi.org/10.1016/j.apcatb.2017.03.009 CrossRefGoogle Scholar
  9. Budiman AW, Song SH, Chang TS, Shin CH, Choi MJ (2012) Dry reforming of methane over cobalt catalysts: a literature review of catalyst development. Catal Surv Jpn 16:183–197.  https://doi.org/10.1007/s10563-012-9143-2 CrossRefGoogle Scholar
  10. Chen L, Zhu Q, Hao Z, Zhang T, Xie Z (2010) Development of a Co–Ni bimetallic aerogel catalyst for hydrogen production via methane oxidative CO2 reforming in a magnetic assisted fluidized bed. Int J Hydrogen Energy 35:8494–8502.  https://doi.org/10.1016/j.ijhydene.2010.06.003 CrossRefGoogle Scholar
  11. Cheng CK, Foo SY, Adesina AA (2010) H2-rich synthesis gas production over Co/Al2O3 catalyst via glycerol steam reforming. Catal Commun 12:292–298.  https://doi.org/10.1016/j.catcom.2010.09.018 CrossRefGoogle Scholar
  12. Cooper CG, Nguyen TH, Lee YJ, Hardiman KM, Safinski T, Lucien FP, Adesina AA (2008) Alumina-supported cobalt-molybdenum catalyst for slurry phase Fischer-Tropsch synthesis. Catal Today 131:255–261.  https://doi.org/10.1016/j.cattod.2007.10.056 CrossRefGoogle Scholar
  13. da Silva AM, de Souza KR, Jacobs G, Graham UM, Davis BH, Mattos LV, Noronha FB (2011) Steam and CO2 reforming of ethanol over Rh/CeO2 catalyst. Appl Catal B Environ 102:94–109.  https://doi.org/10.1016/j.apcatb.2010.11.030 CrossRefGoogle Scholar
  14. da Silva ALM, den Breejen JP, Mattos LV, Bitter JH, de Jong KP, Noronha FB (2014) Cobalt particle size effects on catalytic performance for ethanol steam reforming – smaller is better. J Catal 318:67–74.  https://doi.org/10.1016/j.jcat.2014.07.020 CrossRefGoogle Scholar
  15. Drif A, Bion N, Brahmi R, Ojala S, Pirault-Roy L, Turpeinen E, Seelam PK, Keiski RL, Epron F (2015) Study of the dry reforming of methane and ethanol using Rh catalysts supported on doped alumina. Appl Catal A Gen 504:576–584.  https://doi.org/10.1016/j.apcata.2015.02.019 CrossRefGoogle Scholar
  16. e Santos MAF, Lôbo IP, da Cruz RS (2014) Synthesis and characterization of Novel ZrO2-SiO2 mixed oxides. Mater Res 17:700–707.  https://doi.org/10.1590/S1516-14392014005000046 CrossRefGoogle Scholar
  17. Fayaz F, Danh HT, Nguyen-Huy C, Vu KB, Abdullah B, Vo D-VN (2016) Promotional effect of Ce-dopant on Al2O3-supported Co catalysts for syngas production via CO2 reforming of ethanol. Procedia Eng 148:646–653.  https://doi.org/10.1016/j.proeng.2016.06.530 CrossRefGoogle Scholar
  18. Ferrari A, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condens Matter 61:14095–14107.  https://doi.org/10.1103/PhysRevB.61.14095 CrossRefGoogle Scholar
  19. Firoozi M, Baghalha M, Asadi M (2009) The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catal Commun 10:1582–1585.  https://doi.org/10.1016/j.catcom.2009.04.021 CrossRefGoogle Scholar
  20. Foo SY, Cheng CK, Nguyen TH, Adesina AA (2011) Evaluation of lanthanide-group promoters on Co-Ni/Al2O3 catalysts for CH4 dry reforming. J Mol Catal A Chem 344:28–36.  https://doi.org/10.1016/j.molcata.2011.04.018 CrossRefGoogle Scholar
  21. Homsi D, Aouad S, Gennequin C, Aboukaïs A, Abi-Aad E (2014) A highly reactive and stable Ru/Co6-xMgxAl2 catalyst for hydrogen production via methane steam reforming. Int J Hydrogen Energy 39:10101–10107.  https://doi.org/10.1016/j.ijhydene.2014.04.151 CrossRefGoogle Scholar
  22. Hou T, Zhang S, Chen Y, Wang D, Cai W (2015) Hydrogen production from ethanol reforming: catalysts and reaction mechanism. Renew Sust Energ Rev 44:132–148.  https://doi.org/10.1016/j.rser.2014.12.023 CrossRefGoogle Scholar
  23. Hu X, Lu H (2009) Syngas production by CO2 reforming of ethanol over Ni/Al2O3 catalyst. Catal Commun 10:1633–1637.  https://doi.org/10.1016/j.catcom.2009.04.030 CrossRefGoogle Scholar
  24. Hull S, Trawczynski J (2014) Steam reforming of ethanol on zinc containing catalysts with spinel structure. Int J Hydrogen Energy 39:4259–4265.  https://doi.org/10.1016/j.ijhydene.2013.12.184 CrossRefGoogle Scholar
  25. Jabbour K, Hassan NE, Casale S, Estephane J, Zakhem HE (2014) Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane. Int J Hydrogen Energy 39:7780–7787.  https://doi.org/10.1016/j.ijhydene.2014.03.040 CrossRefGoogle Scholar
  26. Jankhah S, Abatzoglou N, Gitzhofer F (2008) Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments’ production. Int J Hydrogen Energy 33:4769–4779.  https://doi.org/10.1016/j.ijhydene.2008.06.058 CrossRefGoogle Scholar
  27. JCPDS Powder Diffraction File, International Centre for Diffraction Data (2000) SwarthmoreGoogle Scholar
  28. Kumar A, Bhosale RR, Malik SS, Abusrafa AE, Saleh MAH, Ghosh UK, Al-Marri MJ, Almomani FA, Khader MM, Abu-Reesh IM (2016) Thermodynamic investigation of hydrogen enrichment and carbon suppression using chemical additives in ethanol dry reforming. Int J Hydrogen Energy 41:15149–15157.  https://doi.org/10.1016/j.ijhydene.2016.06.157 CrossRefGoogle Scholar
  29. Maia TA, Assaf JM, Assaf EM (2014) Study of Co/CeO2-γ-Al2O3 catalysts for steam and oxidative reforming of ethanol for hydrogen production. Fuel Process Technol 128:134–145.  https://doi.org/10.1016/j.fuproc.2014.07.009 CrossRefGoogle Scholar
  30. Manfro RL, Da Costa AF, Ribeiro NFP, Souza MMVM (2011) Hydrogen production by aqueous-phase reforming of glycerol over nickel catalysts supported on CeO2. Fuel Process Technol 92:330–335.  https://doi.org/10.1016/j.fuproc.2010.09.024 CrossRefGoogle Scholar
  31. Mazumder J, de Lasa H (2014) Fluidizable Ni/La2O3-γAl2O3 catalyst for steam gasification of a cellulosic biomass surrogate. Appl Catal B Environ 160–161:67–79.  https://doi.org/10.1016/j.apcatb.2014.04.042 CrossRefGoogle Scholar
  32. Montini T, Singh R, Das P, Lorenzut B, Bertero N, Riello P, Benedetti A, Giambastiani G, Bianchini C, Zinoviev S, Miertus S, Fornasiero P (2010) Renewable H2 from glycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts. ChemSusChem 3:619–628.  https://doi.org/10.1002/cssc.200900243 CrossRefPubMedGoogle Scholar
  33. Moraes TS, Neto RCR, Ribeiro MC, Mattos LV, Kourtelesis M, Verykios X, Noronha FB (2015) Effects of ceria morphology on catalytic performance of Ni/CeO2 catalysts for low temperature steam reforming of ethanol. Top Catal 58:281–294.  https://doi.org/10.1007/s11244-015-0369-x CrossRefGoogle Scholar
  34. Nanda S, Rana R, Zheng Y, Kozinski JA, Dalai AK (2017) Insights on pathways for hydrogen generation from ethanol. Sustain Energy Fuels 1:1232–1245.  https://doi.org/10.1039/C7SE00212B CrossRefGoogle Scholar
  35. Ni M, Leung DYC, Leung MKH (2007) A review on reforming bio-ethanol for hydrogen production. Int J Hydrogen Energy 32:3238–3247.  https://doi.org/10.1016/j.ijhydene.2007.04.038 CrossRefGoogle Scholar
  36. Ogo S, Shimizu T, Nakazawa Y, Mukawa K, Mukai D, Sekine Y (2015) Steam reforming of ethanol over K promoted Co catalyst. Appl Catal A Gen 495:30–38.  https://doi.org/10.1016/j.apcata.2015.01.018 CrossRefGoogle Scholar
  37. Omoregbe O, Danh HT, Nguyen-Huy C, Setiabudi HD, Abidin SZ, Truong QD, Vo D-VN (2017) Syngas production from methane dry reforming over Ni/SBA-15 catalyst: effect of operating parameters. Int J Hydrogen Energy 42:11283–11294.  https://doi.org/10.1016/j.ijhydene.2017.03.146 CrossRefGoogle Scholar
  38. Osorio-Vargas P, Flores-González NA, Navarro RM, Fierro JLG, Campos CH, Reyes P (2016) Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction. Catal Today 259:27–38.  https://doi.org/10.1016/j.cattod.2015.04.037 CrossRefGoogle Scholar
  39. Papageridis KN, Siakavelas G, Charisiou ND, Avraam DG, Tzounis L, Kousi K, Goula MA (2016) Comparative study of Ni, Co, Cu supported on γ-alumina catalysts for hydrogen production via the glycerol steam reforming reaction. Fuel Process Technol 152:156–175.  https://doi.org/10.1016/j.fuproc.2016.06.024 CrossRefGoogle Scholar
  40. Patterson AL (1939) The Scherrer formula for I-Ray particle size determination. Phys Rev 56:978–982.  https://doi.org/10.1103/PhysRev.56.978 CrossRefGoogle Scholar
  41. Shahirah MNN, Gimbun J, Ideris A, Khan MR, Cheng CK (2017) Catalytic pyrolysis of glycerol into syngas over ceria-promoted Ni/α-Al2O3 catalyst. Renew Energy 107:223–234.  https://doi.org/10.1016/j.renene.2017.02.002 CrossRefGoogle Scholar
  42. Sharma A, Saito I, Nakagawa H, Miura K (2007) Effect of carbonization temperature on the nickel crystallite size of a Ni/C catalyst for catalytic hydrothermal gasification of organic compounds. Fuel 86:915–920.  https://doi.org/10.1016/j.fuel.2006.11.001 CrossRefGoogle Scholar
  43. Srisiriwat N, Therdthianwong S, Therdthianwong A (2009) Oxidative steam reforming of ethanol over Ni/Al2O3 catalysts promoted by CeO2, ZrO2 and CeO2–ZrO2. Int J Hydrogen Energy 34:2224–2234.  https://doi.org/10.1016/j.ijhydene.2008.12.058 CrossRefGoogle Scholar
  44. Usman M, Wan Daud WMA, Abbas HF (2015) Dry reforming of methane: influence of process parameters – a review. Renew Sust Energ 45:710–744.  https://doi.org/10.1016/j.rser.2015.02.026 CrossRefGoogle Scholar
  45. Venvik HJ, Yang J (2017) Catalysis in microstructured reactors: short review on small-scale syngas production and further conversion into methanol, DME and Fischer-Tropsch products. Catal Today 285:135–146.  https://doi.org/10.1016/j.cattod.2017.02.014 CrossRefGoogle Scholar
  46. Vicente J, Montero C, Ereña J, Azkoiti MJ, Bilbao J, Gayubo AG (2014) Coke deactivation of Ni and Co catalysts in ethanol steam reforming at mild temperatures in a fluidized bed reactor. Int J Hydrogen Energy 39:12586–12596.  https://doi.org/10.1016/j.ijhydene.2014.06.093 CrossRefGoogle Scholar
  47. Vo D-VN, Adesina AA (2012) A potassium-promoted Mo carbide catalyst system for hydrocarbon synthesis. Cat Sci Technol 2:2066.  https://doi.org/10.1039/c2cy20385e CrossRefGoogle Scholar
  48. Wang W, Wang Y (2009) Dry reforming of ethanol for hydrogen production: thermodynamic investigation. Int J Hydrogen Energy 34:5382–5389.  https://doi.org/10.1016/j.ijhydene.2009.04.054 CrossRefGoogle Scholar
  49. Wu Z-Y, Chen P, Wu Q-S, Yang L-F, Pan Z, Wang Q (2014) Co/Co3O4/C-N a novel nanostructure and excellent catalytic system for the oxygen reduction reaction. Nano Energy 8:118–125.  https://doi.org/10.1016/j.nanoen.2014.05.019 CrossRefGoogle Scholar
  50. Yang R, Xing C, Lv C, Shi L, Tsubaki N (2010) Promotional effect of La2O3 and CeO2 on Ni/γ-Al2O3 catalysts for CO2 reforming of CH4. Appl Catal A Gen 385:92–100.  https://doi.org/10.1016/j.apcata.2010.06.050 CrossRefGoogle Scholar
  51. Yang J, Ma W, Chen D, Holmen A, Davis BH (2014) Fischer–Tropsch synthesis: a review of the effect of CO conversion on methane selectivity. Appl Catal A Gen 470:250–260.  https://doi.org/10.1016/j.apcata.2013.10.061 CrossRefGoogle Scholar
  52. Zawadzki A, Bellido JDA, Lucrédio AF, Assaf EM (2014) Dry reforming of ethanol over supported Ni catalysts prepared by impregnation with methanolic solution. Fuel Process Technol 128:432–440.  https://doi.org/10.1016/j.fuproc.2014.08.006 CrossRefGoogle Scholar
  53. Zhang W, Burckle EC, Smirniotis PG (1999) Characterization of the acidity of ultrastable Y, mordenite, and ZSM-12 via NH3-stepwise temperature programmed desorption and Fourier transform infrared spectroscopy. Microporous Mesoporous Mater 33:173–185.  https://doi.org/10.1016/S1387-1811(99)00136-5 CrossRefGoogle Scholar
  54. Zhao S, Cai W, Li Y, Yu H, Zhang S, Cui L (2017) Syngas production from ethanol dry reforming over Rh/CeO2 catalyst. J Saudi Chem Soc.  https://doi.org/10.1016/j.jscs.2017.07.003 CrossRefGoogle Scholar
  55. Zhi G, Guo X, Wang Y, Jin G, Guo X (2011) Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide. Catal Commun 16:56–59.  https://doi.org/10.1016/j.catcom.2011.08.037 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fahim Fayaz
    • 1
  • Mahadi B. Bahari
    • 1
  • Thong L. M. Pham
    • 2
  • Chinh Nguyen-Huy
    • 3
  • Herma Dina Setiabudi
    • 1
  • Bawadi Abdullah
    • 4
  • Dai-Viet N. Vo
    • 1
    Email author
  1. 1.Faculty of Chemical & Natural Resources EngineeringUniversiti Malaysia PahangKuantanMalaysia
  2. 2.Institute of Research and DevelopmentDuy Tan UniversityQuang Trung, DanangVietnam
  3. 3.School of Energy & Chemical EngineeringUlsan National Institute of Science and TechnologyUlju-gun, UlsanSouth Korea
  4. 4.Chemical Engineering DepartmentUniversiti Teknologi PetronasSeri IskandarMalaysia

Personalised recommendations