Skip to main content

Experimental Study III: Control of Robot Manipulators

  • Chapter
  • First Online:
Intelligent Control

Abstract

Nowadays, robot manipulators are widely used in industry to cater to various sophisticated tasks [1,2,3,4,5,6,7]. Particularly, in handling of poisonous materials, bio-hazardous substances, etc., the manipulators are employed to avoid any potential hazard to any human life [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.W. Spong, S. Hutchinson, M. Vidyasagar, Robot Dynamics and Control, 2nd edn. (Wiley, 2006)

    Google Scholar 

  2. A.G. Özkil, Z. Fan, S. Dawids, J. Klæstrup Kristensen, K.H. Christensen, H. Aanæs, Service robots for hospitals: a case study of transportation tasks in a hospital, in Proceedings of 2009 IEEE International Conference on Automation and Logistics, Shenyang, China, 2009, pp. 289–294

    Google Scholar 

  3. H.-C. Lin, P.J. Egbelu, C.-T. Wu, A two-robot printed circuit board assembly system. Int. J. Comput. Integr. Manuf. 8(1), 21–31 (1995)

    Article  Google Scholar 

  4. S. Oh, K. Kong, Two-degree-of-freedom control of a two-link manipulator in the rotating coordinate system. IEEE Trans. Ind. Electron. 62(9), 5598–5607 (2015)

    Article  Google Scholar 

  5. S. Cao, L. Guo, X. Wen, Robust fault diagnosis with disturbance rejection and attenuation for systems with multiple disturbances. J. Syst. Eng. Electron. 22(1), 135–140 (2011)

    Article  Google Scholar 

  6. D. Pucci, F. Romano, F. Nori, Collocated adaptive control of under actuated mechanical systems. IEEE Trans. Robot. 31(6), 1527–1536 (2015)

    Article  Google Scholar 

  7. S. Ulrich, J.Z. Sasiadek, Modified simple adaptive control for a two-link space robot, in Proceedings of 2010 American Control Conference, Baltimore, MD, USA, 2010, pp. 3654–3659

    Google Scholar 

  8. H. Jamali, Adaptive control methods for mechanical manipulators: a comparative study, Masters dissertation, Naval Postgraduate School, California, 1989

    Google Scholar 

  9. C.-Y. Su, Y. Stepanenko, T.-P. Leungs, Combined adaptive and variable structure control for constrained robots. Automatica 31(3), 483–488 (1995)

    Article  MathSciNet  Google Scholar 

  10. A. Green, J.Z. Sasiadek, Dynamics and trajectory tracking control of a two-link robot manipulator. J. Vibr. Control 10, 1415–1440 (2004)

    MATH  Google Scholar 

  11. A. Zhakatayev, M. Rubagotti, H.A. Varol, Closed-loop control of variable stiffness actuated robots via nonlinear model predictive control. IEEE Access 3, 235–248 (2015)

    Article  Google Scholar 

  12. J. Tervo, M. Mustonen, R. Korhonen, Intelligent techniques for condition monitoring of rolling mills, in Proceedings of European Symposium on Intelligent Techniques, 2000, pp. 1009–1012

    Google Scholar 

  13. S.A. Abdul Kareem, R. Muhida, R. Akmeliawati, Fuzzy control algorithm for educational light tracking system, in Proceedings of 2nd International Conference on Engineering Education (ICEED), 2010, pp. 22–27

    Google Scholar 

  14. B. Singh, S. Prakash, A.S. Pandey, S.K. Sinha, Intelligent PI controller for speed control of DC motor. Int. J. Electron. Eng. Res. 2(1), 87–100 (2010)

    Google Scholar 

  15. G. Madhusudhana Rao, B.V. Shanker Ram, A neural network based speed control for DC motor. Int. J. Recent Trends Eng. 2(6), 121–124 (2009)

    Google Scholar 

  16. Z. Moravej, M. Co, Speed control DC motor based on neural net and fuzzy logic, in Proceedings of 5th International Conference on System Theory Scientific Computation, Malta, September 2005, pp. 186–193

    Google Scholar 

  17. R.J. Roesthuis, S. Misra, Steering of multisegment continuum manipulators using rigid-link modeling and FBG-based shape sensing. IEEE Trans. Robot. 32(2), 372–382 (2016)

    Google Scholar 

  18. M. Sun, S.S. Ge, I.M.Y. Mareels, Adaptive repetitive learning control of robotic manipulators without the requirement for initial repositioning. IEEE Trans. Robot. 22(3), 563–568 (2006)

    Article  Google Scholar 

  19. D. Biswas, K. Das Sharma, G. Sarkar, Stable adaptive NSOF domain FOPID controller for a class of non-linear systems. IET Control Theory Appl. https://doi.org/10.1049/iet-cta.2017.0732

  20. K. Tanaka, T. Hori, H.O. Wang, A multiple Lyapunov function approach to stabilization of fuzzy control systems. IEEE Trans. Fuzzy Syst. 11(4), 582–589 (2003)

    Article  Google Scholar 

  21. M. Polanský, Advanced robust PDC fuzzy control of nonlinearsystems. World Acad. Sci. Eng. Technol. 11, 859–864 (2007)

    Google Scholar 

  22. N. Hansen, A. Ostermeier, A.Gawelczyk, On the adaptation of arbitrary normal mutation distributions in evolution strategies: the generating set adaptation, in Proceedings of 6th International Conference on Genetic Algorithms, San Francisco, USA, 1995, pp. 57–64

    Google Scholar 

  23. A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in Proceedings of Congress on Evolutionary Computation, Edinburgh, UK, 2005, pp. 1769–1776

    Google Scholar 

  24. P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P.Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Technical Report, Nanyang Tech. University, Singapore, 2005

    Google Scholar 

  25. B.S. Chen, C.H. Lee, Y.C. Chang, H tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach. IEEE Trans. Fuzzy Syst. 4(1), 32–43 (1996)

    Article  Google Scholar 

  26. B.S. Chen, C.L. Tsai, D.S. Chen, Robust H-infinity and mixed H2/H∞ filters for equalization designs of nonlinear communication systems: fuzzy interpolation approach. IEEE Trans. Fuzzy Syst. 11(3), 384–398 (2003)

    Article  Google Scholar 

  27. K. Das Sharma, A. Chatterjee, P. Siarry, A. Rakshit, CMA—H hybrid design of robust stable adaptive fuzzy controllers for non-linear systems, in Proceedings of 1st International Conference on Frontiers in Optimization: Theory and Applications (FOTA-2016), Kolkata, India, 2016 (in press)

    Google Scholar 

  28. Arduino Mega Data sheet, link: arduino.cc, 20 February 2018

    Google Scholar 

  29. RKI 1204: Metal geared standard servo motor (Economy class) Datasheet, Robokits India, 2014

    Google Scholar 

  30. K. Das Sharma, Hybrid methodologies for stable adaptive fuzzy control. PhD dissertation, Jadavpur University, 2012

    Google Scholar 

  31. K. Das Sharma, A. Chatterjee, F. Matsuno, A Lyapunov theory and stochastic optimization based stable adaptive fuzzy control methodology, in Proceedings of SICE Annual Conference 2008, Japan, 20–22 August, pp. 1839–1844

    Google Scholar 

  32. K. Das Sharma, A. Chatterjee, A. Rakshit, A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization. IEEE Trans. Fuzzy Syst. 17(2), 329–342 (2009)

    Article  Google Scholar 

  33. K. Das Sharma, A. Chatterjee, A. Rakshit, Design of a hybrid stable adaptive fuzzy controller employing Lyapunov theory and harmony search algorithm. IEEE Trans. Contr. Syst. Technol. 18(6), 1440–1447 (2010)

    Google Scholar 

  34. L. Ljung, System Identification: Theory for the User (Prentice Hall, 1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Das Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das Sharma, K., Chatterjee, A., Rakshit, A. (2018). Experimental Study III: Control of Robot Manipulators. In: Intelligent Control . Cognitive Intelligence and Robotics. Springer, Singapore. https://doi.org/10.1007/978-981-13-1298-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1298-4_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1297-7

  • Online ISBN: 978-981-13-1298-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics