Skip to main content

Mechanism of Treatment Methods of Arsenic-Contaminated Water

  • Chapter
  • First Online:
Mechanisms of Arsenic Toxicity and Tolerance in Plants

Abstract

Water contamination by arsenic and health issues associated with the contaminated water are worldwide problems. Arsenic contamination in drinking water is causing severe health effects leading to death. The removal of arsenic (As) can be achieved by different methods, and it depends upon the composition of contaminated water. Treatment methods either transfer the pollutants from one phase to another or chemically oxidize to less toxic form. Separation and degradation methods include adsorption, chemical coagulation, membrane processes, electrocoagulation, chemical oxidation, and advanced oxidation processes; and biological methods including biological oxidation, phytoremediation, etc. are found to be efficient for the removal of As from water medium. There are several factors which have influence on each process; the removal efficiency depends upon the optimized conditions. This chapter provides a detailed review on the existing efforts for the As removal from aqueous medium, their advantages and limitations, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedin MJ, Feldmann J, Meharg AA (2002) Uptake kinetics of arsenic species in rice plants. Plant Physiol 128:1120–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahsan H, Chen Y, Parvez F et al (2006) Arsenic exposure from drinking water and risk of premalignant skin lesions in Bangladesh: baseline results from the Health Effects of Arsenic Longitudinal Study. Am J Epidemiol 163:1138–1148

    Article  PubMed  Google Scholar 

  • Alarcon-Herrera MT, Olmos-Marquez MA, Valles-Aragon C et al (2013) Assessments of plants for phytoremediation of arsenic-contaminated water and soil. Eur Chem Bull 2:121–125

    CAS  Google Scholar 

  • Ali I (2014) Water treatment by adsorption columns: evaluation at ground level. Sep Purif Rev 43:175–205

    Article  CAS  Google Scholar 

  • Ali I, Jain CK (2004) Advances in arsenic speciation techniques. Int J Environ Anal Chem 84:947–964

    Article  CAS  Google Scholar 

  • Altundoǧan HS, Altundoǧan S, Tümen F, Bildik M (2000) Arsenic removal from aqueous solutions by adsorption on red mud. Waste Manag 20:761–767

    Article  Google Scholar 

  • Alvarado S, Guédez M, Lué-merú MP et al (2008) Arsenic removal from waters by bioremediation with the aquatic plants Water Hyacinth (Eichhornia crassipes) and Lesser Duckweed (Lemna minor). Bioresour Technol 99:8436–8440

    Article  CAS  PubMed  Google Scholar 

  • Amin MN, Kaneco S, Kitagawa T et al (2006) Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Ind Eng Chem Res 45:8105–8110

    Article  CAS  Google Scholar 

  • Amstaetter K, Borch T, Larese-Casanova P, Kappler A (2010) Redox transformation of arsenic by Fe(II)-activated goethite (α-FeOOH). Environ Sci Technol 44:102–108

    Article  CAS  PubMed  Google Scholar 

  • Anantha Singh TS, Ramesh ST (2013) New trends in electrocoagulation for the removal of dyes from wastewater: a review. Environ Eng Sci 30:333–349

    Article  CAS  Google Scholar 

  • Anantha Singh TS, Ramesh ST (2014) An experimental study of CI Reactive Blue 25 removal from aqueous solution by electrocoagulation using aluminum sacrificial electrode: kinetics and influence of parameters on electrocoagulation performance. Desalin Water Treat 52:2634–2642

    Article  CAS  Google Scholar 

  • Andreoni V, Zanchi R, Cavalca L et al (2012) Arsenite oxidation in ancylobacter dichloromethanicus As3-1b strain: detection of genes involved in arsenite oxidation and CO 2 fixation. Curr Microbiol 65:212–218

    Article  CAS  PubMed  Google Scholar 

  • Bajpai S, Chaudhuri M (1999) Removal of as from ground water by manganese dioxide-coated sand. J Environ Eng 125:243–250

    Article  Google Scholar 

  • Balasubramanian N, Kojima T, Basha CA, Srinivasakannan C (2009) Removal of arsenic from aqueous solution using electrocoagulation. J Hazard Mater 167:966–969

    Article  CAS  PubMed  Google Scholar 

  • Balsamo M, Di Natale F, Erto A et al (2010) Arsenate removal from synthetic wastewater by adsorption onto fly ash. Desalination 263:58–63.035

    Article  CAS  Google Scholar 

  • Baskan MB, Pala A (2009) Determination of arsenic removal efficiency by ferric ions using response surface methodology. J Hazard Mater 166:796–801

    Article  CAS  PubMed  Google Scholar 

  • Battaglia-Brunet F, Dictor M-C, Garrido F et al (2002) An arsenic(III)-oxidizing bacterial population: selection, characterization, and performance in reactors. J Appl Microbiol 93:656–667

    Article  CAS  PubMed  Google Scholar 

  • Benefield LD, Judkins JF, Weand BL (1982) Process chemistry for water and wastewater treatment. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Benga G (2009) Water channel proteins (later called aquaporins) and relatives: past, present, and future. IUBMB Life 61:112–133

    Article  CAS  PubMed  Google Scholar 

  • Bilici Baskan M, Pala A (2010) A statistical experiment design approach for arsenic removal by coagulation process using aluminum sulfate. Desalination 254:42–48

    Article  CAS  Google Scholar 

  • Bisceglia KJ, Rader KJ, Carbonaro RF et al (2005) Iron(II)-catalyzed oxidation of arsenic(III) in a sediment column. Environ Sci Technol 39:9217–9222

    Article  CAS  PubMed  Google Scholar 

  • Bissen M, Frimmel FH (2003) Arsenic – a review. Part I: occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18

    Article  CAS  Google Scholar 

  • Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135

    Article  CAS  PubMed  Google Scholar 

  • Bordoloi S, Nath SK, Gogoi S, Dutta RK (2013) Arsenic and iron removal from groundwater by oxidation-coagulation at optimized pH: laboratory and field studies. J Hazard Mater 260:618–626

    Article  CAS  PubMed  Google Scholar 

  • Borgono JM, Vicent P, Venturino H, Infante A (1977) Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect 19:103–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bouhezila F, Hariti M, Lounici H, Mameri N (2011) Treatment of the OUED SMAR town landfill leachate by an electrochemical reactor. Desalination 280:347–353

    Article  CAS  Google Scholar 

  • Brillas E, Sirés I, Oturan MA (2009) Electro-Fenton process and related electrochemical technologies based on Fenton’s reaction chemistry. Chem Rev 109:6570–6631

    Article  CAS  PubMed  Google Scholar 

  • Brook RR, Robinson BH (1998) Aquatic phytoremediation by accumulator plants. In: Brook RR (ed) Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archaecology, mineral exploration and phytomining. CABI International, Wallingford, pp 203–226

    Google Scholar 

  • Cañizares P, Carmona M, Lobato J et al (2005) Electrodissolution of aluminum electrodes in electrocoagulation processes. Ind Eng Chem Res 44:4178–4185

    Article  CAS  Google Scholar 

  • Cañizares P, Jiménez C, Martínez F et al (2007) Study of the electrocoagulation process using aluminum and iron electrodes. Ind Eng Chem Res 46:6189–6195

    Article  CAS  Google Scholar 

  • Cañizares P, Jiménez C, Martínez F et al (2009) The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters. J Hazard Mater 163:158–164

    Article  PubMed  CAS  Google Scholar 

  • Caussy D (2006) A field guide: detection, management and surveillance of Arsenicosis. Technical Publication No. 30; World Health Organization, Regional Office for South-East Asia

    Google Scholar 

  • Chakraborti D, Rahman MM, Das B et al (2010) Status of groundwater arsenic contamination in Bangladesh: a 14-year study report. Water Res 44:5789–5802

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti D, Rahman MM, Das B et al (2013) Groundwater arsenic contamination in Ganga-Meghna-Brahmaputra plain, its health effects and an approach for mitigation. Environ Earth Sci 70:1993–2008

    Article  Google Scholar 

  • Chen G (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41

    Article  CAS  Google Scholar 

  • Chen Y, Ahsan H (2004) Cancer burden from arsenic in drinking water in Bangladesh. Am J Public Health 94:741–744

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen W, Parette R, Zou J et al (2007) Arsenic removal by iron-modified activated carbon. Water Res 41:1851–1858

    Article  CAS  PubMed  Google Scholar 

  • Choong TSY, Chuah TG, Robiah Y et al (2007) Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination 217:139–166

    Article  CAS  Google Scholar 

  • Chowdhury TR, Basu GK, Mandal BK et al (1999a) Arsenic poisoning in the Ganges delta. Nature (6753):545–546

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury UK, Biswas BK, Dhar RK et al (1999b) Groundwater arsenic contamination and suffering of people in Bangladesh. In: Chappell WR, Abernathy CO, Calderon RL (eds) Arsenic Exposure and Health Effects {III}. Elsevier Science Ltd, Oxford, pp 165–182

    Chapter  Google Scholar 

  • Chowdhury UK, Biswas BK, Chowdhury TR et al (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect 108:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chowdhury R, Sen AK, Karak P et al (2009) Isolation and characterization of an arsenic-resistant bacterium from a bore-well in West Bengal, India. Ann Microbiol 59:253–258

    Article  CAS  Google Scholar 

  • Ciardelli MC, Xu H, Sahai N (2008) Role of Fe(II), phosphate, silicate, sulfate, and carbonate in arsenic uptake by coprecipitation in synthetic and natural groundwater. Water Res 42:615–624

    Article  CAS  PubMed  Google Scholar 

  • Corsini A, Zaccheo P, Muyzer G et al (2014) Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal. J Hazard Mater 269:89–97

    Article  CAS  PubMed  Google Scholar 

  • Cui M, Jang M, Lee S et al (2011) Arsenite oxidation and treatment by ultrasound/iron in aqueous solutions. Jpn J Appl Phys 50:07HE08

    Article  Google Scholar 

  • Cullen WR (2008) Is arsenic an aphrodisiac? The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ćurko J, Mijatović I, Matošić M et al (2011) As(V) removal from drinking water by coagulation and filtration through immersed membrane. Desalination 279:404–408

    Article  CAS  Google Scholar 

  • Davis CC, Knocke WR, Edwards M (2001) Implications of aqueous silica sorption to iron hydroxide: mobilization of iron colloids and interference with sorption of arsenate and humic substances. Environ Sci Technol 35:3158–3162

    Article  CAS  PubMed  Google Scholar 

  • Donahoe-Christiansen J, D’Imperio S, Jackson CR et al (2004) Arsenite-oxidizing hydrogenobaculum strain isolated from an acid-sulfate-chloride geothermal spring in Yellowstone National Park. Appl Environ Microbiol 70:1865–1868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Done AK, Peart AJ (1971) Acute toxicities of arsenical herbicides. Clin Toxicol 4:343–355

    Article  CAS  PubMed  Google Scholar 

  • Dutré V, Vandecasteele C (1995) Solidification/stabilisation of arsenic-containing waste: leach tests and behaviour of arsenic in the leachate. Waste Manag 15:55–62

    Article  Google Scholar 

  • Dutta PK, Pehkonen SO, Sharma VK, Ray AK (2005) Photocatalytic oxidation of arsenic (III): evidence of hydroxyl radicals. Environ Sci Technol 39:1827–1834

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi AK, Srivastava S, Dwivedi S, Tripathi V (2015) Natural bio-remediation of arsenic contamination: a short review. Hydrol Curr Res 6:186. https://doi.org/10.4172/2157-7587.1000186

    Article  CAS  Google Scholar 

  • Elcik H, Celik SO, Cakmakci M, Özkaya B (2016) Performance of nanofiltration and reverse osmosis membranes for arsenic removal from drinking water. Desalin Water Treat 57:20422–20429

    Article  CAS  Google Scholar 

  • Ellis PJ, Conrads T, Hille R, Kuhn P (2001) Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 Å and 2.03 Å. Structure 9:125–132

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Deng B, Whitworth TM (2005) Arsenic removal from drinking water using clay membranes. In: O’Day PA, Vlassopoulos D, Meng X, Benning LG (eds) Advances in arsenic research. American Chemical Society, Washington, DC, pp 294–305

    Chapter  Google Scholar 

  • Ferreccio C, Sancha AM (2006) Arsenic exposure and its impact on health in Chile. J Heal Popul Nutr 24:164–175

    Google Scholar 

  • Figoli A, Cassano A, Criscuoli A et al (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44:97–104

    Article  CAS  PubMed  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Gadgil A, Addy S, Van Genuchten C (2010) A novel technology to remove arsenic from drinking water for Bangladesh tubewells. 2010 AIChE Annual Meeting 10AIChE, pp 1–12

    Google Scholar 

  • Garai R, Chakraborty AK, Dey SB, Saha KC (1984) Chronic arsenic poisoning from tube-well water. J Indian Med Assoc 82:34–35

    CAS  PubMed  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  PubMed  Google Scholar 

  • George SJ, Gandhimathi R, Nidheesh PV, Ramesh ST (2014) Electro-fenton oxidation of salicylic acid from aqueous solution: batch studies and degradation pathway. Clean-Soil Air Water 42:1701–1711

    Article  CAS  Google Scholar 

  • Goldberg S (2002) Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci Soc Am J 66:413. https://doi.org/10.2136/sssaj2002.4130

    Article  CAS  Google Scholar 

  • Gomes JAG, Daida P, Kesmez M et al (2007) Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. J Hazard Mater 139:220–231

    Article  CAS  PubMed  Google Scholar 

  • Guha Mazumder D, Dasgupta UB (2011) Chronic arsenic toxicity: studies in West Bengal, India. Kaohsiung J Med Sci 27:360–370

    Article  CAS  PubMed  Google Scholar 

  • Guha Mazumder DN, Chakraborty AK, Ghose A et al (1988) Chronic arsenic toxicity from drinking tubewell water in rural West Bengal. Bull World Health Organ 66:499–506

    CAS  PubMed  Google Scholar 

  • Guha Mazumer DN, Das Gupta J, Santra A et al (1998) Chronic arsenic toxicity in West Bengal – the worst calamity in the world. J Indian Med Assoc 96:4–7

    Google Scholar 

  • Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal – a review. J Environ Manage 90:2313–2342

    Article  CAS  PubMed  Google Scholar 

  • Gupta VK, Saini VK, Jain N (2005) Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. J Colloid Interface Sci 288:55–60

    Article  CAS  PubMed  Google Scholar 

  • Ha NTH, Sakakibara M, Sano S (2009) Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte Eleocharis acicularis. Clean Soil Air Water 37:720–725

    Article  CAS  Google Scholar 

  • Hambsch B, Raue B, Brauch H-J (1995) Determination of arsenic(III) for the investigation of the microbial oxidation of arsenic(III) to arsenic(V). Acta Hydrochim Hydrobiol 23:166–172

    Article  CAS  Google Scholar 

  • Hering Janet G, Chen Pen Y, Wilkie Jennifer A et al (1996) Arsenic removal by ferric chloride. J Am Water Work Assoc 88:155–167

    Article  Google Scholar 

  • Holt P, Barton G, Mitchell C (1999) Electrocoagulation as a wastewater treatment. In: The Third Annual Australian Environmental Engineering Research Event. Castlemaine, Victoria, pp 1–6

    Google Scholar 

  • Holt PK, Barton GW, Mitchell CA (2005) The future for electrocoagulation as a localized water treatment technology. Chemosphere 59:355–367

    Article  CAS  PubMed  Google Scholar 

  • Hsu LC, Chen KY, Chan YT et al (2016) MS title: catalytic oxidation and removal of arsenite in the presence of Fe ions and zero-valent Al metals. J Hazard Mater 317:237–245

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Liu H, Chen G, Qu J (2012) Effect of aluminum speciation on arsenic removal during coagulation process. Sep Purif Technol 86:35–40

    Article  CAS  Google Scholar 

  • Hug SJ, Leupin O (2003) Iron-catalyzed oxidation of Arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Environ Sci Technol 37:2734–2742

    Article  CAS  PubMed  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  CAS  PubMed  Google Scholar 

  • IARC (2004) Some drinking-water disinfectants and contaminants, including arsenic. IARC Monogr Eval Carcinog Risks Hum 84:1–477

    Google Scholar 

  • Ilyaletdinov AN, Abdrashitova SA (1981) Autotrophic arsenic oxidation by a Pseudomonas arsenitoxidans culture. Mikrobiologiia 50:197–204

    CAS  Google Scholar 

  • International Agency for Cancer Research (2002) IARC monographs on the evaluation of carcinogenic risks to humans. Some drinking-water disinfectants and contaminants including arsenic. International Agency for Cancer Research, Lyon 84:15–22

    Google Scholar 

  • Ito A, Miura JI, Ishikawa N, Umita T (2012) Biological oxidation of arsenite in synthetic groundwater using immobilised bacteria. Water Res 46:4825–4831

    Article  CAS  PubMed  Google Scholar 

  • Jaatinen T (2011) Bio-oxidation and bioleaching of arsenic- containing and refractory gold concentrates. Tampere University of Technology, Tampere

    Google Scholar 

  • Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals: recent techniques. African J Biotechnol 8:921–928

    CAS  Google Scholar 

  • Kang M, Chen H, Sato Y et al (2003) Rapid and economical indicator for evaluating arsenic removal with minimum aluminum residual during coagulation process. Water Res 37:4599–4604

    Article  CAS  PubMed  Google Scholar 

  • Karami A, Sahmsuddin ZH (2010) Phytoremediation of heavy metals with several efficiency enhancer methods - Review. African J Biotechnol 9:3689–3698

    CAS  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36:5141–5155

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Musarrat J (2009) Microbial strategies for crop improvement. Springer, Berlin

    Book  Google Scholar 

  • Khuntia S, Majumder SK, Ghosh P (2014) Oxidation of As(III) to As(V) using ozone microbubbles. Chemosphere 97:120–124

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Nriagu J (2000) Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ 247:71–79

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Kim C, Rengaraj S, Yi J (2004) Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Technol 38:924–931

    Article  CAS  PubMed  Google Scholar 

  • Kim DH, Kim KW, Cho J (2006) Removal and transport mechanisms of arsenics in UF and NF membrane processes. J Water Health 4:215–223

    Article  CAS  PubMed  Google Scholar 

  • Kim D-G, Palacios RJS, Ko S-O (2014) Characterization of sludge generated by electrocoagulation for the removal of heavy metals. Desalin Water Treat 52:909–919

    Article  CAS  Google Scholar 

  • Kinniburgh DG, Kosmus W (2002) Arsenic contamination in groundwater: some analytical considerations. Talanta 58:165–180

    Article  CAS  PubMed  Google Scholar 

  • Kinniburgh DG, Smedley PL, Davies J et al (2003) The scale and causes of the groundwater arsenic problem in Bangladesh. In: Welch AH, Stollenwerk KG (eds) Arsenic in groundwater: geochemistry and occurrence. Springer, Boston, pp 211–257

    Google Scholar 

  • Košutić K, Furač L, Sipos L, Kunst B (2005) Removal of arsenic and pesticides from drinking water by nanofiltration membranes. Sep Purif Technol 42:137–144

    Article  CAS  Google Scholar 

  • Kumar NS, Goel S (2010) Factors influencing arsenic and nitrate removal from drinking water in a continuous flow electrocoagulation (EC) process. J Hazard Mater 173:528–533

    Article  CAS  PubMed  Google Scholar 

  • Lakshmanan D, Clifford DA, Samanta G (2010) Comparative study of arsenic removal by iron using electrocoagulation and chemical coagulation. Water Res 44:5641–5652

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Low K, Hew N (1991) Accumulation of arsenic by aquatic plants. Sci Total Environ 103:215–227

    Article  CAS  Google Scholar 

  • Lee Y, Um IH, Yoon J (2003) Arsenic(III) oxidation by iron(VI) (Ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ Sci Technol 37:5750–5756

    Article  CAS  PubMed  Google Scholar 

  • Lescano MR, Zalazar CS, Cassano AE, Brandi RJ (2011) Arsenic (iii) oxidation of water applying a combination of hydrogen peroxide and UVC radiation. Photochem Photobiol Sci 10:1797–1803

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu Z (2015) Arsenic toxicity: toxicity, manifestation, and geographical distribution. In: Chakrabarty N (ed) Arsenic toxicity: prevention and treatment. CRC Press, Boca Raton, pp 45–78

    Chapter  Google Scholar 

  • Li Z, Deng S, Yu G et al (2010) As(V) and As(III) removal from water by a Ce-Ti oxide adsorbent: behavior and mechanism. Chem Eng J 161:106–113

    Article  CAS  Google Scholar 

  • Li H, Zeng XC, He Z et al (2016) Long-term performance of rapid oxidation of arsenite in simulated groundwater using a population of arsenite-oxidizing microorganisms in a bioreactor. Water Res 101:393–401

    Article  CAS  PubMed  Google Scholar 

  • Liao VHC, Chu YJ, Su YC et al (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123:20–29

    Article  CAS  PubMed  Google Scholar 

  • Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int 2014:503784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long X, Yang X, Ni W (2002) Current situation and prospect on the remediation of soils contaminated by heavy metals. Ying Yong Sheng Tai Xue Bao 13:757–762

    CAS  PubMed  Google Scholar 

  • López-Muñoz MJ, Arencibia A, Segura Y, Raez JM (2017) Removal of As(III) from aqueous solutions through simultaneous photocatalytic oxidation and adsorption by TiO2 and zero-valent iron. Catal Today 280:149–154

    Article  CAS  Google Scholar 

  • Lorenzen L, van Deventer JSJ, Landi WM (1995) Factors affecting the mechanism of the adsorption of arsenic species on activated carbon. Miner Eng 8:557–569

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N et al (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105:9931–9935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macy JM, Santini JM, Pauling BV et al (2000) Two new arsenate/sulfate-reducing bacteria: mechanisms of arsenate reduction. Arch Microbiol 173:49–57

    Article  CAS  PubMed  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    Article  CAS  PubMed  Google Scholar 

  • Mandal BK, Chowdhury TR, Samanta G et al (1996) Arsenic in groundwater in seven districts of West Bengal, India – the biggest arsenic calamity in the world. Curr Sci 70:976–986

    CAS  Google Scholar 

  • Mandal S, Sahu MK, Patel RK (2013) Adsorption studies of arsenic(III) removal from water by zirconium polyacrylamide hybrid material (ZrPACM-43). Water Resour Ind 4:51–67

    Article  Google Scholar 

  • Manju GN, Raji C, Anirudhan TS (1998) Evaluation of coconut husk carbon for the removal of arsenic from water. Water Res 32:3062–3070

    Article  CAS  Google Scholar 

  • Martínez-Villafañe JF, Montero-Ocampo C, García-Lara AM (2009) Energy and electrode consumption analysis of electrocoagulation for the removal of arsenic from underground water. J Hazard Mater 172:1617–1622

    Article  PubMed  CAS  Google Scholar 

  • Matsui Y, Shirasaki N, Yamaguchi T et al (2017) Characteristics and components of poly-aluminum chloride coagulants that enhance arsenate removal by coagulation: detailed analysis of aluminum species. Water Res 118:177–186

    Article  CAS  PubMed  Google Scholar 

  • Mazumder DN, Das Gupta J, Chakraborty a K et al (1992) Environmental pollution and chronic arsenicosis in south Calcutta. Bull World Health Organ 70:481–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Korfiatis GP, Bang S, Bang KW (2002) Combined effects of anions on arsenic removal by iron hydroxides. Toxicol Lett 133:103–111

    Article  CAS  PubMed  Google Scholar 

  • Mertens J, Casentini B, Masion A et al (2012) Polyaluminum chloride with high Al 30 content as removal agent for arsenic-contaminated well water. Water Res 46:53–62

    Article  CAS  PubMed  Google Scholar 

  • Milton AH, Hore SK, Hossain MZ, Rahman M (2012) Bangladesh arsenic mitigation programs: lessons from the past. Emerg Health Threats J 5:7269

    Article  Google Scholar 

  • Mishra VK, Upadhyay AR, Pandey SK, Tripathi BD (2008) Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environ Monit Assess 141:49–58

    Article  CAS  PubMed  Google Scholar 

  • Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytoremediation 6:347–362

    Article  CAS  PubMed  Google Scholar 

  • Mohora E, Rončeví S, Dalmacija B et al (2012) Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor. J Hazard Mater 235:257–264

    Article  PubMed  CAS  Google Scholar 

  • Mokashi SA, Paknikar KM (2002) Arsenic (III) oxidizing Microbacterium lacticum and its use in the treatment of arsenic contaminated groundwater. Lett Appl Microbiol 34:258–262

    Article  CAS  PubMed  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2006) Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J Hazard Mater 137:464–479

    Article  CAS  PubMed  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2008a) Effects of adsorbent dose, its particle size and initial arsenic concentration on the removal of arsenic, iron and manganese from simulated ground water by Fe3+ impregnated activated carbon. J Hazard Mater 150:695–702

    Article  CAS  PubMed  Google Scholar 

  • Mondal P, Majumder CB, Mohanty B (2008b) Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon. J Hazard Mater 153:588–599

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay R, Rosen BP (2002) Arsenate reductases in prokaryotes and eukaryotes. Environ Health Perspect 110:745–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller D, Médigue C, Koechler S et al (2007) A tale of two oxidation states: bacterial colonization of arsenic-rich environments. PLoS Genet 3:0518–0530

    Article  CAS  Google Scholar 

  • Musingarimi W, Tuffin M, Cowan D (2010) Characterisation of the arsenic resistance genes in Bacillus sp. UWC isolated from maturing fly ash acid mine drainage Neutralised solids. S Afr J Sci 106:59–63

    CAS  Google Scholar 

  • Mustafa S, Zaman MI, Gul R, Khan S (2008) Effect of Ni2+ loading on the mechanism of phosphate anion sorption by iron hydroxide. Sep Purif Technol 59:108–114

    Article  CAS  Google Scholar 

  • National Research Council (1999) Arsenic in drinking water. National Academy Press, Washington, DC

    Google Scholar 

  • National Research Council (2001) Arsenic in drinking water: 2001 update. National Academy Press, Washington, DC

    Google Scholar 

  • Neppolian B, Celik E, Choi H (2008) Photochemical oxidation of arsenic(III) to arsenic(V) using peroxydisulfate ions as an oxidizing agent. Environ Sci Technol 42:6179–6184

    Article  CAS  PubMed  Google Scholar 

  • Neppolian B, Doronila A, Grieser F, Ashokkumar M (2009) Simple and efficient sonochemical method for the oxidation of arsenic(III) to arsenic(V). Environ Sci Technol 43:6793–6798

    Article  CAS  PubMed  Google Scholar 

  • Neppolian B, Doronila A, Ashokkumar M (2010) Sonochemical oxidation of arsenic(III) to arsenic(V) using potassium peroxydisulfate as an oxidizing agent. Water Res 44:3687–3695

    Article  CAS  PubMed  Google Scholar 

  • Ng KS, Ujang Z, Le-Clech P (2004) Arsenic removal technologies for drinking water treatment. Rev Environ Sci Bio/Technol 3:43–53

    Article  CAS  Google Scholar 

  • Nguyen CM, Bang S, Cho J, Kim KW (2009) Performance and mechanism of arsenic removal from water by a nanofiltration membrane. Desalination 245:82–94

    Article  CAS  Google Scholar 

  • Nicholas DR, Ramamoorthy S, Palace V et al (2003) Biogeochemical transformations of arsenic in circumneutral freshwater sediments. Biodegradation 14:123–137

    Article  CAS  PubMed  Google Scholar 

  • Nickson R, Sengupta C, Mitra P et al (2007) Current knowledge on the distribution of arsenic in groundwater in five states of India. J Environ Sci Heal – Part A Toxic/Hazardous Subst Environ Eng 42:1707–1718

    Article  CAS  Google Scholar 

  • Nidheesh PV (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. RSC Adv 5:40552–40577

    Article  CAS  Google Scholar 

  • Nidheesh PV, Gandhimathi R (2012) Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination 299:1–15

    Article  CAS  Google Scholar 

  • Nidheesh PV, Gandhimathi R (2014a) Comparative removal of rhodamine B from aqueous solution by electro-fenton and electro-fenton-like processes. Clean Soil Air Water 42:779–784

    Article  CAS  Google Scholar 

  • Nidheesh PV, Gandhimathi R (2014b) Effect of solution pH on the performance of three electrolytic advanced oxidation processes for the treatment of textile wastewater and sludge characteristics. RSC Adv 4:27946–27954

    Article  CAS  Google Scholar 

  • Nidheesh PV, Rajan R (2016) Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon. RSC Adv 6:5330–5340

    Article  CAS  Google Scholar 

  • Nidheesh PV, Singh TSA (2017) Arsenic removal by electrocoagulation process: recent trends and removal mechanism. Chemosphere 181:418–432

    Article  CAS  PubMed  Google Scholar 

  • Nidheesh PV, Gandhimathi R, Ramesh ST (2013) Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res 20:2099–2132

    Article  CAS  Google Scholar 

  • Nidheesh PV, Gandhimathi R, Velmathi S, Sanjini NS (2014) Magnetite as a heterogeneous electro Fenton catalyst for the removal of Rhodamine B from aqueous solution. RSC Adv 4:5698–5708

    Article  CAS  Google Scholar 

  • Ning RY (2002) Arsenic removal by reverse osmosis. Desalination 143:237–241

    Article  CAS  Google Scholar 

  • Nordstrom DK (2000) An overview of arsenic mass-poisoning in Bangladesh and West Bengal, India In: Processing and environmental aspects of As, Sb, Se, Te, and Bi. Society for Mining, Metallurgy and Exploration, pp 21–30

    Google Scholar 

  • Nriagu JO, Bhattahcharya P, Mukherjee AB, et al (2007) Arsenic in soil and groundwater : an overview. In: Bhattacharya Mukherjee, AB, Bundschuh, J, Zevenhoven R, Loeppert RHP (eds) Arsenic in soil and groundwater environment: biogeochemical interactions, health effects and remediation, trace metals and other contaminants in the environment, 9th edn. Elsevier, Land and Water Resources Engineering, School of Architecture and the Built Environment (ABE), KTH, pp 3–60

    Google Scholar 

  • Ociński D, Jacukowicz-Sobala I, Kociołek-Balawejder E (2014) Oxidation and adsorption of arsenic species by means of hybrid polymer containing manganese oxides. J Appl Polym Sci 131:20–229

    Article  CAS  Google Scholar 

  • Oehmen A, Valerio R, Llanos J et al (2011) Arsenic removal from drinking water through a hybrid ion exchange membrane – coagulation process. Sep Purif Technol 83:137–143

    Article  CAS  Google Scholar 

  • Ona-Nguema G, Morin G, Wang Y et al (2010) XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ Sci Technol 44:5416–5422

    Article  CAS  PubMed  Google Scholar 

  • Onishi H (1969) Arsenic. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, New York

    Google Scholar 

  • Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49

    Article  CAS  PubMed  Google Scholar 

  • Páez-Espino D, Tamames J, De Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. BioMetals 22:117–130

    Article  PubMed  CAS  Google Scholar 

  • Pal P, Chakrabortty S, Linnanen L (2014) A nanofiltration-coagulation integrated system for separation and stabilization of arsenic from groundwater. Sci Total Environ 476–477:601–6101

    Article  PubMed  CAS  Google Scholar 

  • Parga JR, Cocke DL, Valenzuela JL et al (2005) Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in la Comarca Lagunera Mexico. J Hazard Mater 124:247–254

    Article  CAS  PubMed  Google Scholar 

  • Pettine M, Millero FJ (2000) Effect of metals on the oxidation of As(III) with H2O2. Mar Chem 70:223–234

    Article  CAS  Google Scholar 

  • Pettine M, Campanella L, Millero FJ (1999) Arsenite oxidation by H2O2 in aqueous solutions. Geochim Cosmochim Acta 63:2727–27354

    Article  CAS  Google Scholar 

  • Prescott LM, Harley JP, Klein DA (2002) Microbiology. McGraw-Hill Higher Education, Dubuque

    Google Scholar 

  • Qin J, Rosen BP, Zhang Y et al (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci USA 103:2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  PubMed  Google Scholar 

  • Rahman MM, Sengupta MK, Ahamed S et al (2005) The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi—one of the 85 arsenic affected blocks in West Bengal, India. Sci Total Environ 338:189–2002

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K et al (2008) Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed). Ecotoxicol Environ Saf 70:311–318

    Article  CAS  PubMed  Google Scholar 

  • Randall PM (2012) Arsenic encapsulation using Portland cement with ferrous sulfate/lime and Terra-BondTM technologies – microcharacterization and leaching studies. Sci Total Environ 420:300–312

    Article  CAS  PubMed  Google Scholar 

  • Ratna Kumar P, Chaudhari S, Khilar KC, Mahajan SP (2004) Removal of arsenic from water by electrocoagulation. Chemosphere 55:1245–1252

    Article  CAS  PubMed  Google Scholar 

  • Rhine ED, Phelps CD, Young LY (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8:899–908

    Article  CAS  PubMed  Google Scholar 

  • Rivera-Reyna N, Hinojosa-Reyes L, Guzman-Mar JL et al (2013) Photocatalytical removal of inorganic and organic arsenic species from aqueous solution using zinc oxide semiconductor. Photochem Photobiol Sci 12:653–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts LC, Hug SJ, Ruettimann T et al (2004) Arsenic removal with iron (II) and iron (III) in waters with high silicate and phosphate concentrations. Environ Sci Technol 38:307–315

    Article  CAS  PubMed  Google Scholar 

  • Robertson FN (1989) Arsenic in ground-water under oxidizing conditions, south-west United States. Environ Geochem Health 11:171–185

    Article  CAS  PubMed  Google Scholar 

  • Robinson B, Marchetti M, Moni C et al (2005) Arsenic accumulation by aquatic and terrestrial plants. Manag Arsen Environ 1:235–247

    Google Scholar 

  • Robinson B, Kim N, Marchetti M et al (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  CAS  PubMed  Google Scholar 

  • Rosen BP, Ajees AA, Mcdermott TR (2011) Life and death with arsenic. BioEssays 33:350–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roychowdhury T (2010) Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning. Int J Hyg Environ Health 213:414–427

    Article  CAS  PubMed  Google Scholar 

  • Saha KC (2003) Saha’s grading of arsenicosis progression and treatment. In: Arsenic exposure and health effects V. Elsevier Inc., Amsterdam, pp 391–414

    Chapter  Google Scholar 

  • Sahai N, Lee YJ, Xu H et al (2007) Role of Fe(II) and phosphate in arsenic uptake by coprecipitation. Geochim Cosmochim Acta 71:3193–3210

    Article  CAS  Google Scholar 

  • Sánchez Calvo L, Leclerc JP, Tanguy G et al (2003) An electrocoagulation unit for the purification of soluble oil wastes of high COD. Environ Prog 22:57–65

    Article  Google Scholar 

  • Sass BM, Rai D (1987) Solubility of amorphous chromium(III)-iron(III) hydroxide solid solutions. Inorg Chem 26:2228–2232

    Article  CAS  Google Scholar 

  • Sato Y, Kang M, Kamei T, Magara Y (2003) Performance of nanofiltration for arsenic removal. Water Res 36:3371–3377

    Article  Google Scholar 

  • Sen M, Manna A, Pal P (2010) Removal of arsenic from contaminated groundwater by membrane-integrated hybrid treatment system. J Memb Sci 354:108–113

    Article  CAS  Google Scholar 

  • Shao B, Guan Y, Tian Z et al (2016) Advantages of aeration in arsenic removal and arsenite oxidation by structural Fe(II) hydroxides in aqueous solution. Colloids Surfaces A Physicochem Eng Asp 506:703–710

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35:743–759

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Adapureddy SM, Goel S (2014) Arsenic removal from aqueous samples in batch electrocoagulation studies. Int Proc Chem Biol Environ Eng 64:40–43

    CAS  Google Scholar 

  • Shih MC (2005) An overview of arsenic removal by pressure-driven membrane processes. Desalination 172:85–97

    Article  CAS  Google Scholar 

  • Smedley PL, Kinniburgh DG, Huq I et al (2001) International perspective on naturally occurring arsenic problems in groundwater. Arsenic exposure and health effects IV. Elsevier, Amsterdam, pp 9–25

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, New York

    Google Scholar 

  • Smith AH, Hopenhayn-Rich C, Bates MN et al (1992) Cancer risks from arsenic in drinking water. Env Heal Perspect 97:259–267

    Article  CAS  Google Scholar 

  • Smith AH, Lingas EO, Rahman M (2000) Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ 78:1093–1103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song S, Lopez-Valdivieso A, Hernandez-Campos DJ et al (2006) Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite. Water Res 40:364–372

    Article  CAS  PubMed  Google Scholar 

  • Song P, Yang Z, Xu H et al (2014) Investigation of influencing factors and mechanism of antimony and arsenic removal by electrocoagulation using Fe-Al electrodes. Ind Eng Chem Res 53:12911–12919

    Article  CAS  Google Scholar 

  • Sorlini S, Gialdini F (2010) Conventional oxidation treatments for the removal of arsenic with chlorine dioxide, hypochlorite, potassium permanganate and monochloramine. Water Res 44:5653–5659

    Article  CAS  PubMed  Google Scholar 

  • Sorlini S, Gialdini F, Stefan M (2014) UV/H2O2 oxidation of arsenic and terbuthylazine in drinking water. Environ Monit Assess 186:1311–1316

    Article  CAS  PubMed  Google Scholar 

  • Su C, Puls RW (2001) Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol 35:1487–1492

    Article  CAS  PubMed  Google Scholar 

  • Su H, Ye Z, Hmidi N (2017) High-performance iron oxide–graphene oxide nanocomposite adsorbents for arsenic removal. Colloids Surfaces A Physicochem Eng Asp 522:161–172

    Article  CAS  Google Scholar 

  • Sullivan C, Tyrer M, Cheeseman CR, Graham NJD (2010) Disposal of water treatment wastes containing arsenic – a review. Sci Total Environ 408:1770–1778

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Sierra-Alvarez R, Milner L, Field JA (2010) Anaerobic oxidation of arsenite linked to chlorate reduction. Appl Environ Microbiol 76:6804–68110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Zhou G, Xiong X et al (2013) Enhanced arsenite removal from water by Ti(SO4)2 coagulation. Water Res 47:4340–4348

    Article  CAS  PubMed  Google Scholar 

  • Swash PM, Monhemius AJ (1995) Synthesis, charecterisation and solubility testing of solids in the Ca-Fe-AsO4 system. In: Conference on mining and the environment, pp 17–28

    Google Scholar 

  • Tong M, Yuan S, Zhang P et al (2014) Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in synthetic groundwater. Environ Sci Technol 48:5145–5153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi RD, Srivastava S, Mishra S et al (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165

    Article  CAS  PubMed  Google Scholar 

  • Uddin MT, Mozumder MSI, Figoli A et al (2007a) Arsenic removal by conventional and membrane technology: an overview. Ind J Chem Technol 14:441–450

    Google Scholar 

  • Uddin MT, Mozumder MSI, Islam MA et al (2007b) Nanofiltration membrane process for the removal of arsenic from drinking water. Chem Eng Technol 30:1248–1254

    Article  CAS  Google Scholar 

  • van Genuchten CM, Bandaru SRS, Surorova E et al (2016) Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment. Chemosphere 153:270–279

    Article  PubMed  CAS  Google Scholar 

  • Vasavi A, Usha R, Swamy PM (2010) Phytoremediation – an overview review. J Ind Pollut Control 26:83–88

    CAS  Google Scholar 

  • Vasudevan S, Mohan S, Sozhan G et al (2006) Studies on the oxidation of As(III) to As(V) by in-situ-generated hypochlorite. Ind Eng Chem Res 45:7729–7732

    Article  CAS  Google Scholar 

  • Ventura-Lima J, Bogo MR, Monserrat JM (2011) Arsenic toxicity in mammals and aquatic animals: a comparative biochemical approach. Ecotoxicol Environ Saf 74:211–218

    Article  CAS  PubMed  Google Scholar 

  • Viraraghavan T, Subramanian KS, Aruldoss JA (1999) Arsenic in drinking water – problems and solutions. Water Sci Technol 56:25–34

    Google Scholar 

  • Vrijenhoek EM, Waypa JJ (2000) Arsenic removal from drinking water by a “loose” nanofiltration membrane. Desalination 130:265–277

    Article  CAS  Google Scholar 

  • Wan W, Pepping TJ, Banerji T et al (2011) Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. Water Res 45:384–392

    Article  CAS  PubMed  Google Scholar 

  • Wang HJ, Gong WX, Liu RP et al (2011) Treatment of high arsenic content wastewater by a combined physical-chemical process. Colloids Surfaces A Physicochem Eng Asp 379:116–120

    Article  CAS  Google Scholar 

  • Wang XQ, Liu CP, Yuan Y, bai LF (2014) Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions. J Hazard Mater 275:200–209

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Duan J, Li W et al (2016) Aqueous arsenite removal by simultaneous ultraviolet photocatalytic oxidation-coagulation of titanium sulfate. J Hazard Mater 303:162–170

    Article  CAS  PubMed  Google Scholar 

  • Wasserman GA, Liu X, Parvez F et al (2004) Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112:1329–1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasserman GA, Liu X, Parvez F et al (2007) Water arsenic exposure and intellectual function in 6-year-old children in Araihazar. Bangladesh. Environ Health Perspect 115:285–289

    Article  CAS  PubMed  Google Scholar 

  • WHO (2011) Arsenic in drinking-water, background document for development of WHO guidelines for drinking-water quality. WHO Press, World Health Organization, Geneva

    Google Scholar 

  • Wilkie JA, Hering JG (1996) Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf A Physicochem Eng Asp 107:97–110

    Article  CAS  Google Scholar 

  • Wong WW, Wong HY, Badruzzaman AB, Goh HH, Zaman M (2017) Recent advances in exploitation of nanomaterial for arsenic removal from water: a review. Nanotechnology 28:42001

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Ma X, Feng M, Liu M (2008) Behavior of chromium and arsenic on activated carbon. J Hazard Mater 159:380–384

    Article  CAS  PubMed  Google Scholar 

  • Wu CC, Hus LC, Chiang PN et al (2013) Oxidative removal of arsenite by Fe(II)- and polyoxometalate (POM)-amended zero-valent aluminum (ZVAl) under oxic conditions. Water Res 47:2583–2591

    Article  CAS  PubMed  Google Scholar 

  • Xu YH, Nakajima T, Ohki A (2002) Adsorption and removal of arsenic(V) from drinking water by aluminum-loaded Shirasu-zeolite. J Hazard Mater 92:275–287

    Article  CAS  PubMed  Google Scholar 

  • Zaspalis V, Pagana A, Sklari S (2007) Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination 217:167–180

    Article  CAS  Google Scholar 

  • Zeng L (2004) Arsenic adsorption from aqueous solutions on an Fe (III)-Si binary oxide adsorbent. Water Qual Res J Canada 39:267–275

    Article  CAS  Google Scholar 

  • Zhang X, Zhao FJ, Huang Q et al (2009) Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol 182:421–428

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Tong M, Yuan S, Liao P (2014) Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation. J Contam Hydrol 164:299–307

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhou W, Liu B et al (2015) Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil. Environ Sci Technol 49:5956–5964

    Article  CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  PubMed  Google Scholar 

  • Zhou L, Zheng W, Ji Y et al (2013) Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system. J Hazard Mater 263:422–430

    Article  CAS  PubMed  Google Scholar 

  • Zouboulis A, Katsoyiannis I (2002) Removal of arsenates from contaminated water by coagulation–direct filtration. Sep Sci Technol 37:2859–2873

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nidheesh, P.V., Karim, A.V., Anantha Singh, T.S., Dofe, D., Sahare, S., Suresh Kumar, M. (2018). Mechanism of Treatment Methods of Arsenic-Contaminated Water. In: Hasanuzzaman, M., Nahar, K., Fujita, M. (eds) Mechanisms of Arsenic Toxicity and Tolerance in Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-1292-2_17

Download citation

Publish with us

Policies and ethics