Skip to main content

Application of Rhamnolipids in Medical Sciences

  • Chapter
  • First Online:

Abstract

The usage of synthetic medicine produced through chemical synthesis shows health hazards and eco-toxicological effects; hence, much attention is paid on the field of bioactive compounds which are efficient with eco-friendly nature. Rhamnolipids biosurfactant in medical field is in trial stage, but most of the experimental results prove very effective due to their safe nature as compared to synthetic medicines. They have been reported for its anti-inflammatory, anticarcinogenic, immune-modulator, anti-microbial, and antitumor activities. Hence, the present chapter represents and describes rhamnolipid biosurfactant as a potential therapeutic agent in biomedical field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas a eruginosa AT10 from soybean oil refinery wastes. Langmuir 17(5):1367–1371

    Article  CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 80:427–444

    Article  Google Scholar 

  • Banat IM, De Rienzo MAD, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98(24):9915–9929

    Article  CAS  PubMed  Google Scholar 

  • Boles BR, Thoendel M, Singh PK (2005) Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol 57(5):1210–1223. https://doi.org/10.1111/j.1365-2958.2005.04743.x PMID 16101996

    Article  CAS  PubMed  Google Scholar 

  • Cameotra SS, Makkar RS (2004) Recent applications of biosurfactants as biological and immunological molecules. Curr Opin Microbiol 7(3):262–266

    Article  CAS  PubMed  Google Scholar 

  • Christova N, Tuleva B, Kril A, Georgieva M, Konstantinov S, Terziyski I, Stoineva I (2013) Chemical structure and in vitro antitumor activity of rhamnolipids from Pseudomonas aeruginosa BN10. Appl Biochem Biotechnol 170(3):676–689

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185(3):1027–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • do Valle Gomes MZ, Nitschke M (2012) Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 25(2):441–447

    Article  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8(9):881

    Article  PubMed  PubMed Central  Google Scholar 

  • Duarte C, Gudiña EJ, Lima CF, Rodrigues LR (2014) Effects of biosurfactants on the viability and proliferation of human breast cancer cells. AMB Express 4(1):40

    Article  PubMed  PubMed Central  Google Scholar 

  • Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP (2010) Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids Surf B Biointerfaces 81:242–248

    Article  CAS  PubMed  Google Scholar 

  • Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Déziel E, Greenberg EP, Poole K, Banin E (2010) Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol 192(12):2973–2980. https://doi.org/10.1128/JB.01601-09 PMC 2901684 . PMID 20154129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajfarajollah H, Mehvari S, Habibian M, Mokhtarani B, Noghabi KA (2015) Rhamnolipid biosurfactant adsorption on a plasma-treated polypropylene surface to induce antimicrobial and antiadhesive properties. RSC Adv 5(42):33089–33097

    Article  CAS  Google Scholar 

  • Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233

    Article  CAS  PubMed  Google Scholar 

  • Irfan-Maqsood M, Seddiq-Shams M (2014) Rhamnolipids: well-characterized glycolipids with potential broad applicability as biosurfactants. Ind Biotechnol 10(4):285–291

    Article  CAS  Google Scholar 

  • Irie Y, O’Toole GA, Yuk MH (2005) Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiol Lett 250:237–243

    Article  CAS  PubMed  Google Scholar 

  • Ivanova A, Karpenko E, Galabov AS, Remichkova M (2010) Effect of Pseudomonas sp. S-17 rhamnolipid on herpes simplex virus type 2. C R Acad Bulg Sci 64(1):157–160

    Google Scholar 

  • de Jesus Cortes-Sanchez A, Hernández-Sánchez H, Jaramillo-Flores ME (2013) Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. Microbiol Res 168(1):22–32

    Article  Google Scholar 

  • Kamal A, Shaik AB, Kumar CG, Mongolla P, Rani PU, Krishna KV, Joseph J (2012) Metabolic profiling and biological activities of bioactive compounds produced by Pseudomonas sp. strain ICTB-745 isolated from Ladakh, India. J Microbiol Biotechnol 22(1):69–79

    Article  CAS  PubMed  Google Scholar 

  • Katariya HB (2012) The concept of microbubble as a drug delivery system: an overview. Int J Pharm Sci Res 3(9):3058

    CAS  Google Scholar 

  • Kosaric N (1993) Biosurfactants: production, properties, applications. CRC Press, Boca Raton, p 48

    Google Scholar 

  • McClure CD, Schiller NL (1992) Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J Leukoc Biol 51(2):97–102

    Article  CAS  PubMed  Google Scholar 

  • Murray TS, Kazmierczak BI (2008) Pseudomonas aeruginosa exhibits sliding motility in the absence of type IV pili and flagella. J Bacteriol 190(8):2700–2708

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Sabatini DA (2011) Characterization and emulsification properties of rhamnolipid and sophorolipid biosurfactants and their applications. Int J Mol Sci 12:1232–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz A, Teruel JA, Espuny MJ, Marqués A, Manresa Á, Aranda FJ (2006) Effects of dirhamnolipid on the structural properties of phosphatidylcholine membranes. Int J Pharm 325(1):99–107

    Article  CAS  PubMed  Google Scholar 

  • Pamp SJ, Tolker-Nielsen T (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189(6):2531–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remichkova M, Galabova D, Roeva I, Karpenko E, Shulga A, Galabov AS (2008) Anti-herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and its complex with alginate. Z Naturforsch C 63(1–2):75–81

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues L, Banat IM, Teixeira J, Oliveir R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  • Sagar SS, Kumar R, Kaistha SD (2016) Biofilm-an eternalchronicle of bacteria. Indian J Comp Microbiol Immunol Infect Dis 37(2):45–56

    Google Scholar 

  • Sharma D (2016) Biosurfactants in food. Springer, Cham

    Chapter  Google Scholar 

  • Shen C, Jiang L, Shao H, You C, Zhang G, Ding S, Meng Q (2016) Targeted killing of myofibroblasts by biosurfactant di-rhamnolipid suggests a therapy against scar formation. Sci Rep 6:37553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava SR, Shrivastava PS, Ramasamy J (2014) Occupational cancer: public health interventions to minimize its burden and impact on the society. Iran J Cancer Prev 7(2):111

    PubMed  PubMed Central  Google Scholar 

  • Stipcevic T, Piljac A, Piljac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32(1):24–34

    Article  PubMed  Google Scholar 

  • Thanomsub B, Pumeechockchai W, Limtrakul A, Arunrattiyakorn P, Petchleelaha W, Nitoda T, Kanzaki H (2006) Chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. Bioresour Technol 97(18):2457–2461

    Article  CAS  PubMed  Google Scholar 

  • Wittschier N, Lengsfeld C, Vorthems S, Stratmann U, Ernst JF, Verspohl EJ, Hensel A (2007) Large molecules as anti-adhesive compounds against pathogens. J Pharm Pharmacol 59(6):777–786

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Nakajima M, Liu Z, Shiina T (2011) Biosurfactants for microbubble preparation and application. Int J Mol Sci 12(1):462–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Das, A.J. (2018). Application of Rhamnolipids in Medical Sciences. In: Rhamnolipid Biosurfactant. Springer, Singapore. https://doi.org/10.1007/978-981-13-1289-2_7

Download citation

Publish with us

Policies and ethics