Advertisement

Introduction

  • Vivien Yeh
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

While membrane protein accounts for 30% of the encoded protein in most genomes, there has been limited success in structural determination due to their hydrophobicity and strong dependence to surrounding membrane environment. This chapter briefly introduces membrane protein and their common structures, as well as common membrane mimics used for the studies of membrane protein. Nandosic, which is a small disc-shaped lipid bilayer enclosed by two copies of membrane scaffold protein, has recently been employed in the field of membrane protein study due to its high stability, size homogeneity and the ability to provide a near native membrane environment for the membrane protein embedded. In order to investigate how the different properties of nanodisc would affect the function of membrane protein, proton pumping integral membrane protein bacteriorhodopsin has been incorporated, which is also introduced in this chapter.

References

  1. 1.
    Lodish H, Berk A, Zipursky SL et al (2000) Molecular cell biology, 4th edn. W. H. Freeman, New YorkGoogle Scholar
  2. 2.
    Wallin E, Heijne GV (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038.  https://doi.org/10.1002/pro.5560070420CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: application to complete genomes1. J Mol Biol 305:567–580.  https://doi.org/10.1006/jmbi.2000.4315CrossRefGoogle Scholar
  4. 4.
    Ahram M, Litou ZI, Fang R, Al-Tawallbeh G (2006) Estimation of membrane proteins in the human proteome. In Silico Biol 6:379–386PubMedGoogle Scholar
  5. 5.
    Daley DO, Rapp M, Granseth E et al (2005) Global topology analysis of the Escherichia coli Inner membrane proteome. Science 308:1321–1323.  https://doi.org/10.1126/science.1109730CrossRefPubMedGoogle Scholar
  6. 6.
    Kim H, Melén K, Österberg M, von Heijne G (2006) A global topology map of the Saccharomyces cerevisiae membrane proteome. Proc Natl Acad Sci 103:11142–11147.  https://doi.org/10.1073/pnas.0604075103CrossRefPubMedGoogle Scholar
  7. 7.
    Bakheet TM, Doig AJ (2009) Properties and identification of human protein drug targets. Bioinformatics 25:451–457.  https://doi.org/10.1093/bioinformatics/btp002CrossRefPubMedGoogle Scholar
  8. 8.
    Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996.  https://doi.org/10.1038/nrd2199CrossRefPubMedGoogle Scholar
  9. 9.
    Yıldırım MA, Goh K-I, Cusick ME et al (2007) Drug—target network. Nat Biotechnol 25:1119–1126.  https://doi.org/10.1038/nbt1338CrossRefPubMedGoogle Scholar
  10. 10.
    Henderson R, Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–32.  https://doi.org/10.1038/257028a0CrossRefPubMedGoogle Scholar
  11. 11.
    Deisenhofer J, Epp O, Miki K et al (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3|[angst]| resolution. Nature 318:618–624.  https://doi.org/10.1038/318618a0CrossRefPubMedGoogle Scholar
  12. 12.
    Michel H (1982) Three-dimensional crystals of a membrane protein complex. J Mol Biol 158:567–572.  https://doi.org/10.1016/0022-2836(82)90216-9CrossRefPubMedGoogle Scholar
  13. 13.
    White SH (2004) The progress of membrane protein structure determination. Protein Sci 13:1948–1949.  https://doi.org/10.1110/ps.04712004CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Almén MS, Nordström KJ, Fredriksson R, Schiöth HB (2009) Mapping the human membrane proteome: a majority of the human membrane proteins can be classified according to function and evolutionary origin. BMC Biol 7:50.  https://doi.org/10.1186/1741-7007-7-50CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Salom D, Palczewski K (2011) Structural biology of membrane proteins. In: Robinson AS (ed) Production of membrane proteins. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 249–273CrossRefGoogle Scholar
  16. 16.
    Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272.  https://doi.org/10.1124/mol.63.6.1256CrossRefPubMedGoogle Scholar
  17. 17.
    Kobilka BK (2007) G protein coupled receptor structure and activation. Biochim Biophys Acta BBA—Biomembr 1768:794–807.  https://doi.org/10.1016/j.bbamem.2006.10.021CrossRefGoogle Scholar
  18. 18.
    Okada T, Le Trong I, Fox BA et al (2000) X-ray diffraction analysis of three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. J Struct Biol 130:73–80.  https://doi.org/10.1006/jsbi.1999.4209CrossRefPubMedGoogle Scholar
  19. 19.
    Okada T, Sugihara M, Bondar A-N et al (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure†. J Mol Biol 342:571–583.  https://doi.org/10.1016/j.jmb.2004.07.044CrossRefPubMedGoogle Scholar
  20. 20.
    White SH (2009) Biophysical dissection of membrane proteins. Nature 459:344–346.  https://doi.org/10.1038/nature08142CrossRefPubMedGoogle Scholar
  21. 21.
    Hanson MA, Stevens RC (2009) Discovery of new GPCR biology: one receptor structure at a time. Structure 17:8–14.  https://doi.org/10.1016/j.str.2008.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bowie JU (1999) Helix-bundle membrane protein fold templates. Protein Sci 8:2711–2719.  https://doi.org/10.1110/ps.8.12.2711CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dutzler R, Campbell EB, Cadene M et al (2002) X-ray structure of a ClC chloride channel at 3.0 |[angst]| reveals the molecular basis of anion selectivity. Nature 415:287–294.  https://doi.org/10.1038/415287aCrossRefPubMedGoogle Scholar
  24. 24.
    Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611.  https://doi.org/10.1038/nature00944CrossRefPubMedGoogle Scholar
  25. 25.
    Olesen C, Sørensen TL-M, Nielsen RC et al (2004) Dephosphorylation of the calcium pump coupled to counterion occlusion. Science 306:2251–2255.  https://doi.org/10.1126/science.1106289CrossRefPubMedGoogle Scholar
  26. 26.
    Manning G, Whyte DB, Martinez R et al (2002) The protein kinase complement of the human genome. Science 298:1912–1934.  https://doi.org/10.1126/science.1075762CrossRefGoogle Scholar
  27. 27.
    Kandalepas PC, Vassar R (2012) Identification and biology of β-secretase: Identification and biology of β-secretase. J Neurochem 120:55–61.  https://doi.org/10.1111/j.1471-4159.2011.07512.xCrossRefPubMedGoogle Scholar
  28. 28.
    Reiss K, Saftig P (2009) The “A Disintegrin And Metalloprotease” (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol 20:126–137.  https://doi.org/10.1016/j.semcdb.2008.11.002CrossRefGoogle Scholar
  29. 29.
    Pahl MC, Askinazi OL, Hamilton C, et al (2001) Signalling via single-pass transmembrane proteins. In: eLS. John Wiley & Sons, LtdGoogle Scholar
  30. 30.
    Zviling M, Kochva U, Arkin IT (2007) How important are transmembrane helices of bitopic membrane proteins? Biochim Biophys Acta BBA—Biomembr 1768:387–392.  https://doi.org/10.1016/j.bbamem.2006.11.019CrossRefGoogle Scholar
  31. 31.
    Lemmon MA, Treutlein HR, Adams PD et al (1994) A dimerization motif for transmembrane α–helices. Nat Struct Mol Biol 1:157–163.  https://doi.org/10.1038/nsb0394-157CrossRefGoogle Scholar
  32. 32.
    Arkin IT (2002) Structural aspects of oligomerization taking place between the transmembrane α-helices of bitopic membrane proteins. Biochim Biophys Acta BBA—Biomembr 1565:347–363.  https://doi.org/10.1016/S0005-2736(02)00580-1CrossRefGoogle Scholar
  33. 33.
    Kleinschmidt JH (2005) Folding and stability of monomeric β-barrel membrane proteins. In: Tamm LK (ed) Protein-lipid interactions. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 27–56Google Scholar
  34. 34.
    Pautsch A, Schulz GE (2000) High-resolution structure of the OmpA membrane domain. J Mol Biol 298:273–282.  https://doi.org/10.1006/jmbi.2000.3671CrossRefPubMedGoogle Scholar
  35. 35.
    Ferguson AD, Hofmann E, Coulton JW et al (1998) Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–2220.  https://doi.org/10.1126/science.282.5397.2215CrossRefPubMedGoogle Scholar
  36. 36.
    Snijder HJ, Ubarretxena-Belandia I, Blaauw M et al (1999) Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401:717–721.  https://doi.org/10.1038/44890CrossRefPubMedGoogle Scholar
  37. 37.
    Cowan SW, Schirmer T, Rummel G et al (1992) Crystal structures explain functional properties of two E. coli porins. Nature 358:727–733.  https://doi.org/10.1038/358727a0CrossRefPubMedGoogle Scholar
  38. 38.
    Forst D, Welte W, Wacker T, Diederichs K (1998) Structure of the sucrose-specific porin ScrY from Salmonella typhimurium and its complex with sucrose. Nat Struct Mol Biol 5:37–46.  https://doi.org/10.1038/nsb0198-37CrossRefGoogle Scholar
  39. 39.
    Goñi FM (2002) Non-permanent proteins in membranes: when proteins come as visitors (Review). Mol Membr Biol 19:237–245.  https://doi.org/10.1080/0968768021000035078CrossRefPubMedGoogle Scholar
  40. 40.
    Whited AM, Johs A (2015) The interactions of peripheral membrane proteins with biological membranes. Chem Phys Lipids 192:51–59.  https://doi.org/10.1016/j.chemphyslip.2015.07.015CrossRefPubMedGoogle Scholar
  41. 41.
    Murray D, Honig B (2002) Electrostatic control of the membrane targeting of C2 domains. Mol Cell 9:145–154.  https://doi.org/10.1016/S1097-2765(01)00426-9CrossRefPubMedGoogle Scholar
  42. 42.
    Harel M, Aharoni A, Gaidukov L et al (2004) Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat Struct Mol Biol 11:412–419.  https://doi.org/10.1038/nsmb767CrossRefPubMedGoogle Scholar
  43. 43.
    Ames JB, Ishima R, Tanaka T et al (1997) Molecular mechanics of calcium–myristoyl switches. Nature 389:198–202.  https://doi.org/10.1038/38310CrossRefPubMedGoogle Scholar
  44. 44.
    Cho W, Stahelin RV (2005) Membrane-protein interactions in cell signaling and membrane trafficking. Annu Rev Biophys Biomol Struct 34:119–151.  https://doi.org/10.1146/annurev.biophys.33.110502.133337CrossRefPubMedGoogle Scholar
  45. 45.
    Smith EM, Macdonald PJ, Chen Y, Mueller JD (2014) Quantifying protein-protein interactions of peripheral membrane proteins by fluorescence brightness analysis. Biophys J 107:66–75.  https://doi.org/10.1016/j.bpj.2014.04.055CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Newby ZER, O’Connell JD, Gruswitz F et al (2009) A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat Protoc 4:619–637.  https://doi.org/10.1038/nprot.2009.27CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Striegel AM (2005) Multiple detection in size-exclusion chromatography of macromolecules. Anal Chem 77:104 A–113 A.  https://doi.org/10.1021/ac053345eCrossRefGoogle Scholar
  48. 48.
    Nury H, Manon F, Arnou B et al (2008) Mitochondrial bovine ADP/ATP carrier in detergent is predominantly monomeric but also forms multimeric species. Biochemistry (Mosc) 47:12319–12331.  https://doi.org/10.1021/bi801053mCrossRefGoogle Scholar
  49. 49.
    Wei Y, Li H, Fu D (2004) Oligomeric state of the escherichia coli metal transporter YiiP. J Biol Chem 279:39251–39259.  https://doi.org/10.1074/jbc.M407044200CrossRefPubMedGoogle Scholar
  50. 50.
    Riley ML, Wallace BA, Flitsch SL, Booth PJ (1997) Slow α helix formation during folding of a membrane protein. Biochemistry (Mosc) 36:192–196.  https://doi.org/10.1021/bi962199rCrossRefGoogle Scholar
  51. 51.
    Lórenz-Fonfría VA, Villaverde J, Trézéguet V et al (2003) Structural and functional implications of the instability of the ADP/ATP transporter purified from mitochondria as revealed by FTIR spectroscopy. Biophys J 85:255–266.  https://doi.org/10.1016/S0006-3495(03)74471-3CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pascal AA, Caron L, Rousseau B et al (1998) Resonance Raman spectroscopy of a light-harvesting protein from the brown alga Laminaria saccharina. Biochemistry (Mosc) 37:2450–2457.  https://doi.org/10.1021/bi9719657CrossRefGoogle Scholar
  53. 53.
    Reyes N, Ginter C, Boudker O (2009) Transport mechanism of a bacterial homologue of glutamate transporters. Nature 462:880–885.  https://doi.org/10.1038/nature08616CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Junge F, Schneider B, Reckel S et al (2008) Large-scale production of functional membrane proteins. Cell Mol Life Sci 65:1729–1755.  https://doi.org/10.1007/s00018-008-8067-5CrossRefPubMedGoogle Scholar
  55. 55.
    Privé GG (2007) Detergents for the stabilization and crystallization of membrane proteins. Methods 41:388–397.  https://doi.org/10.1016/j.ymeth.2007.01.007CrossRefPubMedGoogle Scholar
  56. 56.
    Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18:581–586.  https://doi.org/10.1016/j.sbi.2008.07.001CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Pedersen BP, Buch-Pedersen MJ, Preben Morth J et al (2007) Crystal structure of the plasma membrane proton pump. Nature 450:1111–1114.  https://doi.org/10.1038/nature06417CrossRefPubMedGoogle Scholar
  58. 58.
    Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382.  https://doi.org/10.1038/nature06265CrossRefPubMedGoogle Scholar
  59. 59.
    Cherezov V, Rosenbaum DM, Hanson MA et al (2007) High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318:1258–1265.  https://doi.org/10.1126/science.1150577CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Adrian M, Dubochet J, Lepault J, McDowall AW (1984) Cryo-electron microscopy of viruses. Nature 308:32–36.  https://doi.org/10.1038/308032a0CrossRefPubMedGoogle Scholar
  61. 61.
    Mosser G (2001) Two-dimensional crystallogenesis of transmembrane proteins. Micron 32:517–540.  https://doi.org/10.1016/S0968-4328(00)00047-0CrossRefPubMedGoogle Scholar
  62. 62.
    Luca S, Heise H, Baldus M (2003) High-resolution solid-state NMR applied to polypeptides and membrane proteins. Acc Chem Res 36:858–865.  https://doi.org/10.1021/ar020232yCrossRefPubMedGoogle Scholar
  63. 63.
    Ketchem RR, Hu W, Cross TA (1993) High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261:1457–1460.  https://doi.org/10.1126/science.7690158CrossRefPubMedGoogle Scholar
  64. 64.
    Andrew ER, Bradbury A, Eades RG (1958) NMR spectra from a crystal rotated at high speed. Nat Lond 182:1659CrossRefGoogle Scholar
  65. 65.
    Garavito RM, Ferguson-Miller S (2001) Detergents as tools in membrane biochemistry. J Biol Chem 276:32403–32406.  https://doi.org/10.1074/jbc.R100031200CrossRefPubMedGoogle Scholar
  66. 66.
    le Maire M, Champeil P, Møller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta BBA—Biomembr 1508:86–111.  https://doi.org/10.1016/S0304-4157(00)00010-1CrossRefGoogle Scholar
  67. 67.
    Linke D (2009) Chapter 34 detergents: an overview. In: Deutscher RRB, MP (ed) Methods in enzymology. Academic Press, pp 603–617Google Scholar
  68. 68.
    Lin S-H, Guidotti G (2009) Chapter 35 Purification of Membrane Proteins. In: Deutscher RRB, MP (ed) Methods in Enzymology. Academic Press, pp 619–629Google Scholar
  69. 69.
    Newby ZER, O’Connell JD, Gruswitz F et al (2009) A general protocol for the crystallization of membrane proteins for X-ray structural investigation. Nat Protoc 4:619–637.  https://doi.org/10.1038/nprot.2009.27CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta BBA—Biomembr 1666:105–117.  https://doi.org/10.1016/j.bbamem.2004.04.011CrossRefGoogle Scholar
  71. 71.
    Hunte C, Screpanti E, Venturi M et al (2005) Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202.  https://doi.org/10.1038/nature03692CrossRefPubMedGoogle Scholar
  72. 72.
    Lund S, Orlowski S, de Foresta B et al (1989) Detergent structure and associated lipid as determinants in the stabilization of solubilized Ca2+ -ATPase from sarcoplasmic reticulum. J Biol Chem 264:4907–4915PubMedGoogle Scholar
  73. 73.
    Gutmann DAP, Mizohata E, Newstead S et al (2007) A high-throughput method for membrane protein solubility screening: the ultracentrifugation dispersity sedimentation assay. Protein Sci 16:1422–1428.  https://doi.org/10.1110/ps.072759907CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Gautier A, Mott HR, Bostock MJ et al (2010) Structure determination of the seven-helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17:768–774.  https://doi.org/10.1038/nsmb.1807CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Tribet C, Audebert R, Popot J-L (1996) Amphipols: polymers that keep membrane proteins soluble in aqueous solutions. Proc Natl Acad Sci 93:15047–15050CrossRefGoogle Scholar
  76. 76.
    Gorzelle BM, Hoffman AK, Keyes MH et al (2002) Amphipols can support the activity of a membrane enzyme. J Am Chem Soc 124:11594–11595.  https://doi.org/10.1021/ja027051bCrossRefPubMedGoogle Scholar
  77. 77.
    Mueller K (1981) Structural dimorphism of bile salt/lecithin mixed micelles. A possible regulatory mechanism for cholesterol solubility in bile? X-ray structural analysis. Biochemistry (Mosc) 20:404–414CrossRefGoogle Scholar
  78. 78.
    Sanders CR, Landis GC (1995) Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry (Mosc) 34:4030–4040.  https://doi.org/10.1021/bi00012a022CrossRefGoogle Scholar
  79. 79.
    Prosser RS, Evanics F, Kitevski JL, Al-Abdul-Wahid MS (2006) Current applications of bicelles in NMR studies of membrane-associated amphiphiles and proteins. Biochemistry (Mosc) 45:8453–8465.  https://doi.org/10.1021/bi060615uCrossRefGoogle Scholar
  80. 80.
    Johansson LC, Wöhri AB, Katona G et al (2009) Membrane protein crystallization from lipidic phases. Curr Opin Struct Biol 19:372–378.  https://doi.org/10.1016/j.sbi.2009.05.006CrossRefPubMedGoogle Scholar
  81. 81.
    Loudet C, Khemtémourian L, Aussenac F et al (2005) Bicelle membranes and their use for hydrophobic peptide studies by circular dichroism and solid state NMR. Biochim Biophys Acta BBA—Gen Subj 1724:315–323.  https://doi.org/10.1016/j.bbagen.2005.04.026CrossRefGoogle Scholar
  82. 82.
    van Dam L, Karlsson G, Edwards K (2004) Direct observation and characterization of DMPC/DHPC aggregates under conditions relevant for biological solution NMR. Biochim Biophys Acta BBA—Biomembr 1664:241–256.  https://doi.org/10.1016/j.bbamem.2004.06.005CrossRefGoogle Scholar
  83. 83.
    Lau T-L, Partridge AW, Ginsberg MH, Ulmer TS (2008) Structure of the integrin β3 transmembrane segment in phospholipid bicelles and detergent micelles. Biochemistry (Mosc) 47:4008–4016.  https://doi.org/10.1021/bi800107aCrossRefGoogle Scholar
  84. 84.
    Lindberg M, Biverståhl H, Gräslund A, Mäler L (2003) Structure and positioning comparison of two variants of penetratin in two different membrane mimicking systems by NMR. Eur J Biochem 270:3055–3063.  https://doi.org/10.1046/j.1432-1033.2003.03685.xCrossRefPubMedGoogle Scholar
  85. 85.
    Poget SF, Girvin ME (2007) Solution NMR of membrane proteins in bilayer mimics: small is beautiful, but sometimes bigger is better. Biochim Biophys Acta BBA—Biomembr 1768:3098–3106.  https://doi.org/10.1016/j.bbamem.2007.09.006CrossRefGoogle Scholar
  86. 86.
    Kagawa Y, Racker E (1971) Partial Resolution of the enzymes catalyzing oxidative phosphorylation XXV. Reconstitution of vesicles catalyzing 32Pi—adenosine triphosphate exchange. J Biol Chem 246:5477–5487Google Scholar
  87. 87.
    Ramos-Franco J, Bare D, Caenepeel S et al (2000) Single-channel function of recombinant type 2 inositol 1,4,5-trisphosphate receptor. Biophys J 79:1388–1399.  https://doi.org/10.1016/S0006-3495(00)76391-0CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Wang L, Sigworth FJ (2009) Structure of the BK potassium channel in a lipid membrane from electron cryomicroscopy. Nature 461:292–295.  https://doi.org/10.1038/nature08291CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Wang L, Tonggu L (2015) Membrane protein reconstitution for functional and structural studies. Sci China Life Sci 58:66–74.  https://doi.org/10.1007/s11427-014-4769-0CrossRefPubMedGoogle Scholar
  90. 90.
    Young HS, Rigaud JL, Lacapère JJ et al (1997) How to make tubular crystals by reconstitution of detergent-solubilized Ca2(+)-ATPase. Biophys J 72:2545–2558.  https://doi.org/10.1016/S0006-3495(97)78898-2CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Tonge SR, Tighe BJ (2001) Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 53:109–122.  https://doi.org/10.1016/S0169-409X(01)00223-XCrossRefPubMedGoogle Scholar
  92. 92.
    Knowles TJ, Finka R, Smith C et al (2009) Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J Am Chem Soc 131:7484–7485.  https://doi.org/10.1021/ja810046qCrossRefPubMedGoogle Scholar
  93. 93.
    Orwick-Rydmark M, Lovett JE, Graziadei A et al (2012) Detergent-free incorporation of a seven-transmembrane receptor protein into nanosized bilayer lipodisq particles for functional and biophysical studies. Nano Lett 12:4687–4692.  https://doi.org/10.1021/nl3020395CrossRefPubMedGoogle Scholar
  94. 94.
    Alfrey T, Lavin E (1945) The copolymerization of styrene and maleic anhydride. J Am Chem Soc 67:2044–2045.  https://doi.org/10.1021/ja01227a502CrossRefGoogle Scholar
  95. 95.
    Hill DJT, O’Donnell JH, O’Sullivan PW (1985) Analysis of the mechanism of copolymerization of styrene and maleic anhydride. Macromolecules 18:9–17.  https://doi.org/10.1021/ma00143a002CrossRefGoogle Scholar
  96. 96.
    Klumperman B (2010) Mechanistic considerations on styrene? Maleic anhydride copolymerization reactions. Polym Chem 1:558.  https://doi.org/10.1039/b9py00341jCrossRefGoogle Scholar
  97. 97.
    Yao Z, Li B-G, Wang W-J, Pan Z-R (1999) Continuous thermal bulk copolymerization of styrene and maleic anhydride. J Appl Polym Sci 73:615–622. https://doi.org/10.1002/(sici)1097-4628(19990801)73:5<615::aid-app1>3.0.co;2-1CrossRefGoogle Scholar
  98. 98.
    Dörr JM, Scheidelaar S, Koorengevel MC et al (2016) The styrene–maleic acid copolymer: a versatile tool in membrane research. Eur Biophys J 45:3–21.  https://doi.org/10.1007/s00249-015-1093-yCrossRefPubMedGoogle Scholar
  99. 99.
    Lee SC, Knowles TJ, Postis VLG et al (2016) A method for detergent-free isolation of membrane proteins in their local lipid environment. Nat Protoc 11:1149–1162.  https://doi.org/10.1038/nprot.2016.070CrossRefPubMedGoogle Scholar
  100. 100.
    Scheidelaar S, Koorengevel M, Pardo J et al (2015) Molecular model for the solubilization of membranes into nanodisks by styrene maleic acid copolymers. Biophys J 108:279–290.  https://doi.org/10.1016/j.bpj.2014.11.3464CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Dörr JM, Koorengevel MC, Schäfer M, et al (2014) Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc Natl Acad Sci 111:18607–18612.  https://doi.org/10.1073/pnas.1416205112CrossRefGoogle Scholar
  102. 102.
    Long AR, O’Brien CC, Malhotra K et al (2013) A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC Biotechnol 13:41CrossRefGoogle Scholar
  103. 103.
    Smirnova IA, Sjöstrand D, Li F et al (2016) Isolation of yeast complex IV in native lipid nanodiscs. Biochim Biophys Acta BBA—Biomembr 1858:2984–2992.  https://doi.org/10.1016/j.bbamem.2016.09.004CrossRefGoogle Scholar
  104. 104.
    Jamshad M, Grimard V, Idini I et al (2015) Structural analysis of a nanoparticle containing a lipid bilayer used for detergent-free extraction of membrane proteins. Nano Res 8:774–789.  https://doi.org/10.1007/s12274-014-0560-6CrossRefGoogle Scholar
  105. 105.
    Gulati S, Jamshad M, Knowles TJ et al (2014) Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem J 461:269–278.  https://doi.org/10.1042/BJ20131477CrossRefPubMedGoogle Scholar
  106. 106.
    Postis V, Rawson S, Mitchell JK et al (2015) The use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy. Biochim Biophys Acta BBA—Biomembr 1848:496–501.  https://doi.org/10.1016/j.bbamem.2014.10.018CrossRefGoogle Scholar
  107. 107.
    Jamshad M, Charlton J, Lin Y-P et al (2015) G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci Rep 35:e00188.  https://doi.org/10.1042/BSR20140171CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Dominguez Pardo JJ, Dörr JM, Iyer A et al (2017) Solubilization of lipids and lipid phases by the styrene–maleic acid copolymer. Eur Biophys J 46:91–101.  https://doi.org/10.1007/s00249-016-1181-7CrossRefPubMedGoogle Scholar
  109. 109.
    Sahu ID, McCarrick RM, Troxel KR et al (2013) DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles. Biochemistry (Mosc) 52:6627–6632.  https://doi.org/10.1021/bi4009984CrossRefGoogle Scholar
  110. 110.
    Prabudiansyah I, Kusters I, Caforio A, Driessen AJM (2015) Characterization of the annular lipid shell of the Sec translocon. Biochim Biophys Acta BBA—Biomembr 1848:2050–2056.  https://doi.org/10.1016/j.bbamem.2015.06.024CrossRefGoogle Scholar
  111. 111.
    Banerjee S, Pal TK, Guha SK (2012) Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer. Biochim Biophys Acta BBA—Biomembr 1818:537–550.  https://doi.org/10.1016/j.bbamem.2011.12.010CrossRefGoogle Scholar
  112. 112.
    Huang Y, DiDonato JA, Levison BS et al (2014) An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 20:193–203.  https://doi.org/10.1038/nm.3459CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Lund-Katz S, Phillips MC (2010) High density lipoprotein structure–function and role in reverse cholesterol transport. In: Harris JR (ed) Cholesterol binding and cholesterol transport proteins. Springer Netherlands, pp 183–227Google Scholar
  114. 114.
    Silva RAGD, Huang R, Morris J et al (2008) Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes. Proc Natl Acad Sci 105:12176–12181.  https://doi.org/10.1073/pnas.0803626105CrossRefPubMedGoogle Scholar
  115. 115.
    Davidson WS, Thompson TB (2007) The Structure of apolipoprotein A-I in high density lipoproteins. J Biol Chem 282:22249–22253.  https://doi.org/10.1074/jbc.R700014200CrossRefPubMedGoogle Scholar
  116. 116.
    Huang R, Silva RAGD, Jerome WG et al (2011) Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma. Nat Struct Mol Biol 18:416–422.  https://doi.org/10.1038/nsmb.2028CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Phillips JC, Wriggers W, Li Z et al (1997) Predicting the structure of apolipoprotein A-I in reconstituted high-density lipoprotein disks. Biophys J 73:2337–2346.  https://doi.org/10.1016/S0006-3495(97)78264-XCrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Bayburt TH, Grinkova YV, Sligar SG (2002) Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins. Nano Lett 2:853–856.  https://doi.org/10.1021/nl025623kCrossRefGoogle Scholar
  119. 119.
    Jonas A (1986) Reconstitution of high-density lipoproteins. Methods Enzymol 128:553–582CrossRefGoogle Scholar
  120. 120.
    Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer nanodiscs with controlled size. J Am Chem Soc 126:3477–3487.  https://doi.org/10.1021/ja0393574CrossRefGoogle Scholar
  121. 121.
    Klon AE, Segrest JP, Harvey SC (2002) Comparative models for human apolipoprotein A-I bound to lipid in discoidal high-density lipoprotein particles. Biochemistry (Mosc) 41:10895–10905.  https://doi.org/10.1021/bi020315mCrossRefGoogle Scholar
  122. 122.
    Denisov IG, Sligar SG (2016) Nanodiscs for structural and functional studies of membrane proteins. Nat Struct Mol Biol 23:481–486.  https://doi.org/10.1038/nsmb.3195CrossRefPubMedGoogle Scholar
  123. 123.
    Efremov RG, Leitner A, Aebersold R, Raunser S (2015) Architecture and conformational switch mechanism of the ryanodine receptor. Nature 517:39–43.  https://doi.org/10.1038/nature13916CrossRefPubMedGoogle Scholar
  124. 124.
    Frauenfeld J, Gumbart J, van der Sluis EO et al (2011) Cryo-EM structure of the ribosome–SecYE complex in the membrane environment. Nat Struct Mol Biol 18:614–621.  https://doi.org/10.1038/nsmb.2026CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Katayama H, Wang J, Tama F et al (2010) Three-dimensional structure of the anthrax toxin pore inserted into lipid nanodiscs and lipid vesicles. Proc Natl Acad Sci 107:3453–3457.  https://doi.org/10.1073/pnas.1000100107CrossRefPubMedGoogle Scholar
  126. 126.
    Yu T-Y, Raschle T, Hiller S, Wagner G (2012) Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim Biophys Acta BBA—Biomembr 1818:1562–1569.  https://doi.org/10.1016/j.bbamem.2011.11.012CrossRefGoogle Scholar
  127. 127.
    Raschle T, Hiller S, Yu T-Y et al (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131:17777–17779.  https://doi.org/10.1021/ja907918rCrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Shenkarev ZO, Lyukmanova EN, Solozhenkin OI et al (2009) Lipid-protein nanodiscs: possible application in high-resolution NMR investigations of membrane proteins and membrane-active peptides. Biochemistry Mosc 74:756–765.  https://doi.org/10.1134/S0006297909070086CrossRefPubMedGoogle Scholar
  129. 129.
    Shenkarev ZO, Lyukmanova EN, Paramonov AS et al (2010) Lipid–protein nanodiscs as reference medium in detergent screening for high-resolution NMR studies of integral membrane proteins. J Am Chem Soc 132:5628–5629.  https://doi.org/10.1021/ja9097498CrossRefPubMedGoogle Scholar
  130. 130.
    Morgado L, Zeth K, Burmann BM et al (2015) Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy. J Biomol NMR 61:333–345.  https://doi.org/10.1007/s10858-015-9906-yCrossRefPubMedGoogle Scholar
  131. 131.
    Glück JM, Wittlich M, Feuerstein S et al (2009) Integral membrane proteins in nanodiscs can be studied by solution NMR spectroscopy. J Am Chem Soc 131:12060–12061.  https://doi.org/10.1021/ja904897pCrossRefPubMedGoogle Scholar
  132. 132.
    Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925.  https://doi.org/10.1021/ja310901fCrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Davydov DR, Fernando H, Baas BJ et al (2005) Kinetics of dithionite-dependent reduction of cytochrome P450 3A4: heterogeneity of the enzyme caused by its oligomerization. Biochemistry (Mosc) 44:13902–13913.  https://doi.org/10.1021/bi0509346CrossRefGoogle Scholar
  134. 134.
    Baas BJ, Denisov IG, Sligar SG (2004) Homotropic cooperativity of monomeric cytochrome P450 3A4 in a nanoscale native bilayer environment. Arch Biochem Biophys 430:218–228.  https://doi.org/10.1016/j.abb.2004.07.003CrossRefPubMedGoogle Scholar
  135. 135.
    Bayburt TH, Vishnivetskiy SA, McLean MA et al (2011) Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. J Biol Chem 286:1420–1428.  https://doi.org/10.1074/jbc.M110.151043CrossRefPubMedGoogle Scholar
  136. 136.
    Lanyi JK (1993) Proton translocation mechanism and energetics in the light-driven pump bacteriorhodopsin. Biochim Biophys Acta BBA-Bioenerg 1183:241–261CrossRefGoogle Scholar
  137. 137.
    Huang KS, Bayley H, Liao M-J et al (1981) Refolding of an integral membrane protein. Denaturation, renaturation, and reconstitution of intact bacteriorhodopsin and two proteolytic fragments. J Biol Chem 256:3802–3809PubMedGoogle Scholar
  138. 138.
    Booth PJ, Flitsch SL, Stern LJ et al (1995) Intermediates in the folding of the membrane protein bacteriorhodopsin. Nat Struct Mol Biol 2:139–143.  https://doi.org/10.1038/nsb0295-139CrossRefGoogle Scholar
  139. 139.
    Bayburt TH, Grinkova YV, Sligar SG (2006) Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs. Arch Biochem Biophys 450:215–222.  https://doi.org/10.1016/j.abb.2006.03.013CrossRefPubMedGoogle Scholar
  140. 140.
    Lanyi JK (2000) Molecular mechanism of ion transport in Bacteriorhodopsin: insights from crystallographic, spectroscopic, kinetic, and mutational studies. J Phys Chem B 104:11441–11448.  https://doi.org/10.1021/jp0023718CrossRefGoogle Scholar
  141. 141.
    Baudry J, Tajkhorshid E, Molnar F et al (2001) Molecular dynamics study of bacteriorhodopsin and the purple membrane. J Phys Chem B 105:905–918.  https://doi.org/10.1021/jp000898eCrossRefGoogle Scholar
  142. 142.
    Luecke H, Schobert B, Richter H-T et al (1999) Structure of bacteriorhodopsin at 1.55 Å resolution 1. J Mol Biol 291:899–911.  https://doi.org/10.1006/jmbi.1999.3027CrossRefPubMedGoogle Scholar
  143. 143.
    Lemke H-D, Oesterhelt D (1981) Lysine 216 is a binding site of the retinyl moiety in bacteriorhodopsin. FEBS Lett 128:255–260.  https://doi.org/10.1016/0014-5793(81)80093-2CrossRefPubMedGoogle Scholar
  144. 144.
    Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of halobacterium halobium. Nature 233:149–152.  https://doi.org/10.1038/10.1038/newbio233149a0CrossRefGoogle Scholar
  145. 145.
    Stoeckenius W, Rowen R (1967) A morphological study of halobacterium halobium and its lysis in media of low salt concentration. J Cell Biol 34:365–393.  https://doi.org/10.1083/jcb.34.1.365CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci 70:2853–2857CrossRefGoogle Scholar
  147. 147.
    Terner J, El-Sayed MA (1985) Time-resolved resonance Raman spectroscopy of photobiological and photochemical transients. Acc Chem Res 18:331–338CrossRefGoogle Scholar
  148. 148.
    Rothschild KJ, Zagaeski M, Cantore WA (1981) Conformational changes of bacteriorhodopsin detected by Fourier transform infrared difference spectroscopy. Biochem Biophys Res Commun 103:483–489.  https://doi.org/10.1016/0006-291X(81)90478-2CrossRefPubMedGoogle Scholar
  149. 149.
    Hackett NR, Stern LJ, Chao BH et al (1987) Structure-function studies on bacteriorhodopsin. V. Effects of amino acid substitutions in the putative helix F. J Biol Chem 262:9277–9284PubMedGoogle Scholar
  150. 150.
    Hoffmann M, Wanko M, Strodel P et al (2006) Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II. J Am Chem Soc 128:10808–10818.  https://doi.org/10.1021/ja062082iCrossRefPubMedGoogle Scholar
  151. 151.
    Lanyi JK (2006) Proton transfers in the bacteriorhodopsin photocycle. Biochim Biophys Acta BBA—Bioenerg 1757:1012–1018.  https://doi.org/10.1016/j.bbabio.2005.11.003CrossRefGoogle Scholar
  152. 152.
    Sharkov AV, Pakulev AV, Chekalin SV, Matveetz YA (1985) Primary events in bacteriorhodopsin probed by subpicosecond spectroscopy. Biochim Biophys Acta BBA—Bioenerg 808:94–102.  https://doi.org/10.1016/0005-2728(85)90031-3CrossRefGoogle Scholar
  153. 153.
    Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688.  https://doi.org/10.1146/annurev.physiol.66.032102.150049CrossRefPubMedGoogle Scholar
  154. 154.
    Zimanyi L, Varo G, Chang M et al (1992) Pathways of proton release in the bacteriorhodopsin photocycle. Biochemistry (Mosc) 31:8535–8543CrossRefGoogle Scholar
  155. 155.
    Morgan JE, Vakkasoglu AS, Lanyi JK et al (2010) Coordinating the structural rearrangements associated with unidirectional proton transfer in the bacteriorhodopsin photocycle induced by deprotonation of the proton-release group: a time-resolved difference FTIR spectroscopic study. Biochemistry (Mosc) 49:3273–3281.  https://doi.org/10.1021/bi901757yCrossRefGoogle Scholar
  156. 156.
    Phatak P, Ghosh N, Yu H et al (2008) Amino acids with an intermolecular proton bond as proton storage site in bacteriorhodopsin. Proc Natl Acad Sci 105:19672–19677.  https://doi.org/10.1073/pnas.0810712105CrossRefPubMedGoogle Scholar
  157. 157.
    Gerwert K, Souvignier G, Hess B (1990) Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. Proc Natl Acad Sci 87:9774–9778CrossRefGoogle Scholar
  158. 158.
    Smith SO, Pardoen JA, Mulder PPJ et al (1983) Chromophore structure in bacteriorhodopsin’s O640 photointermediate. Biochemistry (Mosc) 22:6141–6148.  https://doi.org/10.1021/bi00295a016CrossRefGoogle Scholar
  159. 159.
    Riesle J, Oesterhelt D, Dencher NA, Heberle J (1996) D38 is an essential part of the proton translocation pathway in bacteriorhodopsin. Biochemistry (Mosc) 35:6635–6643.  https://doi.org/10.1021/bi9600456CrossRefGoogle Scholar
  160. 160.
    Richter H-T, Needleman R, Kandori H et al (1996) Relationship of retinal configuration and internal proton transfer at the end of the bacteriorhodopsin photocycle. Biochemistry (Mosc) 35:15461–15466.  https://doi.org/10.1021/bi9612430CrossRefGoogle Scholar
  161. 161.
    Blaurock AE, Stoeckenius W (1971) Structure of the purple membrane. Nature 233:152–155.  https://doi.org/10.1038/10.1038/newbio233152a0CrossRefGoogle Scholar
  162. 162.
    Cartailler J-P, Luecke H (2003) X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane. Annu Rev Biophys Biomol Struct 32:285–310.  https://doi.org/10.1146/annurev.biophys.32.110601.142516CrossRefPubMedGoogle Scholar
  163. 163.
    Corcelli A, Lattanzio VMT, Mascolo G et al (2002) Lipid-protein stoichiometries in a crystalline biological membrane: NMR quantitative analysis of the lipid extract of the purple membrane. J Lipid Res 43:132–140PubMedGoogle Scholar
  164. 164.
    Reyenolds JA, Stoeckenius W (1977) Molecular weight of bacteriorhodopsin solubilized in Triton X-100. Proc Natl Acad Sci 74:2803–2804CrossRefGoogle Scholar
  165. 165.
    Sternberg B, L’Hostis C, Whiteway CA, Watts A (1992) The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin. Biochim Biophys Acta BBA—Biomembr 1108:21–30.  https://doi.org/10.1016/0005-2736(92)90110-8CrossRefGoogle Scholar
  166. 166.
    Heberle J, Riesle J, Thiedemann G et al (1994) Proton migration along the membrane surface and retarded surface to bulk transfer. Nature 370:379–382.  https://doi.org/10.1038/370379a0CrossRefPubMedGoogle Scholar
  167. 167.
    Mukhopadhay AK, Bose S, Hendler RW (1994) Membrane-mediated control of the bacteriorhodopsin photocycle. Biochemistry (Mosc) 33:10889–10895CrossRefGoogle Scholar
  168. 168.
    Joshi MK, Dracheva S, Mukhopadhyay AK et al (1998) Importance of specific native lipids in controlling the photocycle of bacteriorhodopsin. Biochemistry (Mosc) 37:14463–14470.  https://doi.org/10.1021/bi980965jCrossRefGoogle Scholar
  169. 169.
    Dracheva S, Bose S, Hendler RW (1996) Chemical and functional studies on the importance of purple membrane lipids in bacteriorhodopsin photocycle behavior. FEBS Lett 382:209–212.  https://doi.org/10.1016/0014-5793(96)00181-0CrossRefPubMedGoogle Scholar
  170. 170.
    Sugiyama Y, Yamada N, Mukohata Y (1994) The light-driven proton pump, cruxrhodopsin-2 in Haloarcula sp. arg-2 (bR+, hR−), and its coupled ATP formation. Biochim Biophys Acta BBA—Bioenerg 1188:287–292.  https://doi.org/10.1016/0005-2728(94)90047-7CrossRefGoogle Scholar
  171. 171.
    Sugiyama Y, Maeda M, Futai M, Mukohata Y (1989) Isolation of a gene that encodes a new retinal protein, archaerhodopsin, from Halobacterium sp. aus-1. J Biol Chem 264:20859–20862PubMedGoogle Scholar
  172. 172.
    Balashov SP, Imasheva ES, Boichenko VA et al (2005) Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna. Science 309:2061–2064.  https://doi.org/10.1126/science.1118046CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    DeLong EF, Béjà O (2010) The light-driven proton pump proteorhodopsin enhances bacterial survival during tough times. PLoS Biol 8:e1000359.  https://doi.org/10.1371/journal.pbio.1000359CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Tsai F-K, Fu H-Y, Yang C-S, Chu L-K (2014) Photochemistry of a dual-bacteriorhodopsin system in Haloarcula marismortui: HmbRI and HmbRII. J Phys Chem B 118:7290–7301.  https://doi.org/10.1021/jp503629vCrossRefGoogle Scholar
  175. 175.
    Sineshchekov OA, Jung K-H, Spudich JL (2002) Two rhodopsins mediate phototaxis to low-and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci 99:8689–8694CrossRefGoogle Scholar
  176. 176.
    Baliga NS, Bonneau R, Facciotti MT et al (2004) Genome sequence of Haloarcula marismortui: A halophilic archaeon from the Dead Sea. Genome Res 14:2221–2234.  https://doi.org/10.1101/gr.2700304CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Fu H-Y, Lin Y-C, Chang Y-N et al (2010) A novel six-rhodopsin system in a single Archaeon. J Bacteriol 192:5866–5873.  https://doi.org/10.1128/JB.00642-10CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Fu H-Y, Yi H-P, Lu Y-H, Yang C-S (2013) Insight into a single halobacterium using a dual-bacteriorhodopsin system with different functionally optimized pH ranges to cope with periplasmic pH changes associated with continuous light illumination. Mol Microbiol 88:551–561.  https://doi.org/10.1111/mmi.12208CrossRefPubMedGoogle Scholar
  179. 179.
    Hsu M-F, Yu T-F, Chou C-C et al (2013) Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli. PLoS One 8:e56363.  https://doi.org/10.1371/journal.pone.0056363CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Shevchenko V, Gushchin I, Polovinkin V et al (2014) Crystal structure of Escherichia coli-expressed Haloarcula marismortui bacteriorhodopsin I in the trimeric form. PLoS One 9:e112873.  https://doi.org/10.1371/journal.pone.0112873CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Luecke H, Schobert B, Richter H-T et al (1999) Structural changes in bacteriorhodopsin during ion transport at 2 Angstrom resolution. Science 286:255–260.  https://doi.org/10.1126/science.286.5438.255CrossRefPubMedGoogle Scholar
  182. 182.
    von Heijne G, (2006) Membrane-protein topology. Nat Rev Mol Cell Biol 7(12):909–918CrossRefGoogle Scholar
  183. 183.
    Bayburt TH, Sligar SG (2010) Membrane protein assembly into Nanodiscs. FEBS Letters 584(9):1721–1727CrossRefGoogle Scholar
  184. 184.
    Baudry J, Tajkhorshid E, Molnar F et al (2001) Molecular Dynamics Study of Bacteriorhodopsin and the Purple Membrane. J Phys Chem A 105(5):905–918CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Vivien Yeh
    • 1
  1. 1.Department of ChemistryNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations