Skip to main content

Renewable Energy Substitution Model and Environmental Preservation

  • Chapter
  • First Online:
Technologies and Eco-innovation towards Sustainability II
  • 647 Accesses

Abstract

Excessive usage of fossil fuels, which contain large hydrocarbons, worsens global warming, public health, and ecosystems. The rate of environmental degradation and greenhouse gas emissions is decelerated by switching from fossil fuels into renewables. This research applies time series method to estimate the electric power consumption of 112 countries. Then, a stochastic substitution model is introduced to estimate the contribution of the renewables in the electric power generation. The main part of the model relies on the Bayesian inference and pseudo random number generators (PRNGs) to update the statistical distribution of renewables in the substitution model. The results of the four types of substitution models emphasize on renewables investment as a way to accelerate the substitution and environment preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The PRNG is an algorithm to generate a sequence of numbers whose properties are approximately similar to the properties of sequences of random numbers.

References

  1. Reguly E. Paris climate accord marks shift toward low-carbon economy. Toronto, Canada: Globe and Mail; 2015.

    Google Scholar 

  2. GEA. Global energy assessments. International Institute for applied systems analysis. Cambridge: Cambridge Univ. Press; 2012.

    Google Scholar 

  3. IEA. World energy statistics. Paris: International Energy Agency; 2014.

    Google Scholar 

  4. Deb C, Zhang F, Yang J, Lee SE, Shah KW. A review on time series forecasting techniques for building energy consumption. Renew Sust Energ Rev. 2017;74:902–24.

    Article  Google Scholar 

  5. Shakouri HG, Nadimi R, Ghaderi SF. A hybrid TSK-FR model to study short-term variations of the electricity demand versus the temperature changes. Expert Syst Appl. 2009;36:1765–72.

    Article  Google Scholar 

  6. Bassamzadeh N, Ghanem R. Multiscale stochastic prediction of electricity demand in smart grids using Bayesian networks. Appl Energy. 2017;193:369–80.

    Article  Google Scholar 

  7. Rao KU, Kishore V. A review of technology diffusion models with special reference to renewable energy technology. Renew Sust Energ Rev. 2010;14:1070–8.

    Article  Google Scholar 

  8. Lee C-Y, Huh SY. Forecasting the diffusion of renewable electricity considering the impact of policy and oil prices: The case of South Korea. Appl Energy. 2017;69:207–17.

    Google Scholar 

  9. Fisher JC. A simple substitution model of technological change. Technol Forecast Soc Change. 1971;3:75–88.

    Article  Google Scholar 

  10. Sharif MN, Kabir C. A generalized model for forecasting technological substitution. Technol Forecast Soc Change. 1976;8:353–64.

    Article  Google Scholar 

  11. Meade N. Technological substitution: a framework of stochastic models. Technol Forecast Soc Change. 1989;36:389–400.

    Article  Google Scholar 

  12. Huh S-Y, Lee C-Y. Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships. Energy Policy. 2014;69:248–57.

    Article  Google Scholar 

  13. Meade N, Islam T. Modelling European usage of renewable energy technologies for electricity generation. Technol Forecast Soc Change. 2015;90:497–509.

    Article  Google Scholar 

  14. Kumar R, Agarwala A. Renewable energy technology diffusion model for techno-economics feasibility. Renew Sust Energ Rev. 2016;54:1515–24.

    Article  Google Scholar 

  15. Ross S. A first course in probability. 8th ed. United States of America: Prentice Hall (PEARSON); 2010.

    Google Scholar 

  16. Gentle JE. Random number generation and monte carlo methods. New York; London: Springer; 2003.

    Google Scholar 

  17. Montgomery DC, Jennins CL, Kulahci M. Introduction to time series analysis and forecasting. Hoboken, New Jersey: WILEY-Interscience; 2008.

    Google Scholar 

  18. WHO. World Bank Open Data [Online]. 2017. data.worldbank.org.

  19. IEA. International Energy Agency. [Online]. 2017. http://www.iea.org/statistics.

  20. Reza Nadimi, Koji Tokimatsu. Potential energy saving via overall efficiency relying on quality of life. Appl Energy. 2019;233–234:283–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix: Parameters of the Linear Trend Model and Starting Year for Each Country

Appendix: Parameters of the Linear Trend Model and Starting Year for Each Country

Country name

Parameters

Starting point

Country name

Parameters

Starting point

u

v

u

v

Australia

37025.5

4991.5

1970

Cyprus

9.5

85.3

1972

Austria

21612.5

1177.4

1970

Georgia

5987.8

212.5

1995

Belgium

31231.5

1548.3

1970

Kazakhstan

40349.0

2318.1

1995

Canada

227925.8

8757.8

1970

Latvia

4401.7

127.0

1993

Chile

646.2

1960.0

1981

Lithuania

8970.6

107.2

1993

Czech Republic

44719.0

624.5

1976

Malta

102.2

50.0

1971

Denmark

31415.0

190.1

1976

Romania

47003.0

243.5

1996

Estonia

6541.0

70.4

1990

Russia

707373.0

10568.0

1993

Finland

64241.0

1171.8

1990

Serbia

29993.0

189.1

2004

France

366221.0

6156.0

1990

Tajikistan

23747.0

274.1

1994

Germany

371972.3

5628.0

1970

Turkmenistan

5744.6

269.8

1990

Greece

7087.8

1321.3

1970

Ukraine

148404.0

486.6

1994

Hungary

22339.8

427.9

1970

Uzbekistan

42834.0

248.6

1992

Iceland

1240.4

2336.6

1989

Algeria

191.2

1030.6

1977

Ireland

3021.5

584.9

1970

Angola

121.7

1674.6

2002

Israel

562.1

1358.6

1973

Botswana

87.5

105.8

1981

Italy

238657.0

4787.3

1990

Cameroon

209.9

196.2

1971

Japan

908349.0

91.2

1990

Ethiopia

697.1

1028.2

2000

Luxembourg

3034.3

118.7

1970

Gabon

179.2

33.4

1971

Mexico

5513.0

5640.1

1971

Ghana

28.7

466.1

1972

Netherlands

39069.1

1949.8

1970

Kenya

590.7

130.1

1971

New Zealand

13607.2

718.2

1970

Libya

231.2

548.1

1977

Norway

36060.0

4994.5

1970

Mauritius

11.7

87.9

1983

Poland

83089.9

1516.4

1970

Morocco

100.0

670.0

1976

Portugal

2185.5

1193.7

1970

Mozambique

1349.0

1875.1

1996

Slovenia

9592.2

208.4

1990

Namibia

1087.7

118.2

1991

Spain

128941.0

6909.8

1990

Nigeria

231.8

530.5

1974

Sweden

126470.0

513.9

1983

Senegal

14.9

60.3

1975

Switzerland

28675.8

901.8

1970

South Africa

50816.0

4818.9

1971

Turkey

46.8

6092.3

1982

Sudan

249.3

979.6

2003

United Kingdom

231957.0

3496.8

1970

Togo

35.9

17.4

1971

United States

2000000.0

67849.0

1970

Tunisia

86.0

376.0

1976

Argentina

6980.1

2461.1

1971

Zambia

4468.8

183.8

1971

Brazil

670893.0

47010.0

1990

Zimbabwe

6329.8

100.1

1971

Colombia

134459.0

3961.9

1990

Bahrain

87.2

706.1

1979

Costa Rica

1790.4

2209.0

1984

Iraq

3827.8

817.4

1971

Cuba

5862.7

229.3

1971

Jordan

233.0

383.7

1983

Dominican Republic

157.6

497.3

1983

Kuwait

572.3

1392.2

1977

El Salvador

66.2

130.9

1973

Lebanon

96.6

408.3

1979

Ecuador

4966.6

878.6

1997

Oman

259.1

805.8

1990

Haiti

136.6

9.2

1971

Qatar

1105.1

1686.5

1996

Honduras

2685.3

423.6

1990

Saudi Arabia

4179.4

7216.9

1982

Jamaica

1020.3

101.3

1971

United Arab Emirates

1415.6

4335.4

1991

Nicaragua

896.4

101.7

1991

Bangladesh

627.2

1963.1

1993

Panama

1686.1

235.4

1991

Cambodia

17.1

254.0

2002

Paraguay

112858.0

1165.2

1990

India

1876.7

24690.0

1981

Peru

7964.0

1282.3

1992

Indonesia

2622.5

6569.8

1988

Trinidad and Tobago

118.1

184.6

1971

Malaysia

495.4

4346.4

1986

Uruguay

13765.0

774.6

1990

Mongolia

2471.5

48.4

1985

Albania

1790.9

711.9

1992

Nepal

62.7

159.8

1988

Armenia

3431.5

111.9

1995

Pakistan

152.2

2325.5

1977

Azerbaijan

16257.0

78.1

1990

Philippines

2116.2

1312.2

1971

Belarus

29223.0

202.4

1993

Singapore

165.2

1312.7

1978

Bosnia and Herzegovina

2549.3

486.7

1992

Sri Lanka

230.2

295.6

1981

Bulgaria

28932.0

174.5

1970

Thailand

2494.6

5282.6

1983

Croatia

9971.6

298.5

1990

China

54716.0

238844.0

1995

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nadimi, R., Tokimatsu, K. (2019). Renewable Energy Substitution Model and Environmental Preservation. In: Hu, A., Matsumoto, M., Kuo, T., Smith, S. (eds) Technologies and Eco-innovation towards Sustainability II. Springer, Singapore. https://doi.org/10.1007/978-981-13-1196-3_22

Download citation

Publish with us

Policies and ethics