Advertisement

A Novel RFID Data Management Model Based on Quantum Cryptography

  • He XuEmail author
  • Xin Chen
  • Peng Li
  • Jie Ding
  • Caleb Eghan
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 797)

Abstract

Radio frequency identification (RFID) is considered one of the key technologies to realize the Internet of things (IoT), which is used in many areas, such as mobile payments, public transportation, smart lock, environment protection. However, cloning an RFID tag becomes an easy thing because of gradually rising usage of programmable read-write tags. For example, by using a device like Proxmark III hardware and related software tools, it is possible to clone RFID tags and even to emulate readers. Quantum cryptography has now been put into commercial use. This paper mainly uses quantum cryptography within presented RFID middleware architecture to protect RFID systems from the clone attack, which is guaranteed by “no-cloning” properties of quantum mechanics. In this architecture, tags and readers are communicated through qubits, while the RFID middleware could prepare and measure qubits. The proposal architecture will help to maximize the future RFID systems’ security.

Keywords

Quantum cryptography RFID Middleware Data management 

Notes

Acknowledgements

This work is financially supported by the National Natural Science Foundation of P. R. China (No.: 61572260, No.: 61572261, No.: 61672296, No.: 61602261), Scientific & Technological Support Project of Jiangsu Province (No.: BE2015702, BE2016185, No.: BE2016777), China Postdoctoral Science Foundation (No.: 2014M561696), Jiangsu Planned Projects for Postdoctoral Research Funds (No.: 1401005B), Postgraduate Research and Practice Innovation Program of Jiangsu Province (KYCX17_0798, KYCX18_0931).

References

  1. 1.
    Geng J, He Z (2016) Innovation and development strategy of logistics service based on internet of things and rfid automatic technology. Int J Future Gener Commun Networking 9(12):251–262CrossRefGoogle Scholar
  2. 2.
    Khattab A, Jeddi Z, Amini E, Bayoumi M (2017) RFID security threats and basic solutions. In: Analog circuits and signal processing. Springer, Cham, pp 27–41Google Scholar
  3. 3.
    Fernández-Caramés TM, Fraga-Lamas P, Suárez-Albela M et al (2017) Reverse engineering and security evaluation of commercial tags for RFID-Based IoT applications. Sensors 17(28):1–31Google Scholar
  4. 4.
    Liang W, Liao B, Long J et al (2016) Study on PUF based secure protection for IC design. Microprocess Microsyst 45(PA):56–66CrossRefGoogle Scholar
  5. 5.
    Zeitouni S, Oren Y, Wachsmann C et al (2016) Remanence decay side-channel: the PUF case. IEEE Trans Inf Forensics Secur 11(6):1106–1116CrossRefGoogle Scholar
  6. 6.
    Yashiro R, Machida T, Iwamoto M et al (2016) Deep-learning-based security evaluation on authentication systems using arbiter puf and its variants. In: Ogawa K, Yoshioka K (eds) IWSEC 2016, vol 9836. LNCS. Springer, Cham, pp 267–285Google Scholar
  7. 7.
    Becker GT (2015) The gap between promise and reality: on the insecurity of XOR arbiter PUFs. In: Güneysu T, Handschuh H (eds) CHES 2015, LNCS, vol 9293. Springer, Heidelberg, pp 535–555Google Scholar
  8. 8.
    Maass M, Müller U, Schons T et al (2015) NFCGate: an NFC relay application for Android. In: Proceedings of the 8th ACM conference on security and privacy in wireless and mobile networks. ACM, New York, pp 27–28Google Scholar
  9. 9.
    Entezari R, Bahramgiri H, Tajamolian M (2017) RFID unilateral distance bounding protocols: a trade-off between mafia and distance fraud. Comput Commun 98(1):97–105CrossRefGoogle Scholar
  10. 10.
    Zhou Y, Zhou J (2016) Distance bounding protocol for RFID Systems. In: Yang Q, Yu W, Challal Y (eds) International Conference on Wireless Algorithms, Systems, and Applications WASA 2016. LNCS, vol 9798. Springer, Cham, pp 241–249CrossRefGoogle Scholar
  11. 11.
    Igier M, Vaudenay S (2016) Distance Bounding based on PUF. In: Foresti S, Persiano G (eds) CANS 2016, vol 10052. LNCS. Springer, Cham, pp 701–710Google Scholar
  12. 12.
    Jannati H, Ardeshir-Larijani E (2016) Detecting relay attacks on RFID communication systems using quantum bits. Quantum Inf Process 15(11):4759–4771MathSciNetCrossRefGoogle Scholar
  13. 13.
    Thayananthan V, Alzahrani A, Qureshi MS (2015) Efficient techniques of key management and quantum cryptography in RFID networks. Secur Commun Netw 8(4):589–597CrossRefGoogle Scholar
  14. 14.
    Jagatheesan K, Samanta S, Choudhury A et al (2018) Quantum inspired evolutionary algorithm in load frequency control of multi-area interconnected thermal power system with non-linearity. In: Hassanien A, Elhoseny M, Kacprzyk J (eds) Studies in big data, vol 33. Springer, Cham, pp 389–417Google Scholar
  15. 15.
    Samanta S, Choudhury A, Dey N, et al (2017) Quantum-inspired evolutionary algorithm for scaling factor optimization during manifold medical information embedding, pp 285–326,  https://doi.org/10.1016/B978-0-12-804409-4.00009-7CrossRefGoogle Scholar
  16. 16.
    Choudhury A, Samanta S, Dey N et al (2015) Microscopic image segmentation using quantum inspired evolutionary algorithm. J Adv Microsc Res 10(3):164–173CrossRefGoogle Scholar
  17. 17.
    Gisin N, Thew R (2007) Quantum communication. Nat Photonics 1(3):165–171CrossRefGoogle Scholar
  18. 18.
    Akhiezer NI, Glazman IM (2013) Theory of linear operators in Hilbert space. Dover Publications, INC., New YorkzbMATHGoogle Scholar
  19. 19.
    Li XH, Li CY, Deng FG et al (2007) Quantum secure direct communication with quantum encryption based on pure entangled states. Chin Phys 16(8):2149–2153CrossRefGoogle Scholar
  20. 20.
    Cao H, Ma W (2017) (t, n) Threshold quantum state sharing scheme based on linear equations and unitary operation. IEEE Photonics J 9(1):1–7MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wootters WK, Zurek WH (1982) A single quantum cannot be cloned. Nature 299(5886):802–803CrossRefGoogle Scholar
  22. 22.
    Karimi H, Hosseini SM, Jahan MV (2013) On the combination of self-organized systems to generate pseudo-random numbers. Inf Sci 221(1):371–388MathSciNetCrossRefGoogle Scholar
  23. 23.
    Melia-Segui J, Garcia-Alfaro J, Herrera-Joancomarti J (2010) Analysis and improvement of a pseudorandom number generator for EPC Gen2 tags. In: Sion R et al (eds) FC 2010 Workshops, LNCS 6054. Springer, Heidelberg, pp 34–46Google Scholar
  24. 24.
    Chun H, Choi I, Faulkner G et al (2018) Motion-compensated handheld quantum key distribution system. https://arxiv.org/abs/1608.07465. Last accessed 26 Oct 2018
  25. 25.
    Sheng YB, Zhou L (2015) Deterministic entanglement distillation for secure double-server blind quantum computation. Sci Rep 5:7815CrossRefGoogle Scholar
  26. 26.
    Sheng YB, Pan J, Guo R, Zhou L, Wang L (2015) Efficient N-particle W state concentration with different parity check gates. Sci Chin Phys Mech Astron 58:060301CrossRefGoogle Scholar
  27. 27.
    Zhou L, Ou-Yang Y, Wang L et al (2017) Quantum Inf Process 16:151CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Nanjing University of Posts and TelecommunicationsNanjingChina
  2. 2.Jiangsu High Technology Research Key Laboratory for Wireless Sensor NetworksNanjingChina

Personalised recommendations