Advertisement

A Novel Cohesitive Implicative Classification Based on \(M_{GK}\) and Application on Diagnostic on Informatics Literacy of Students of Higher Education in Madagascar

  • Hery Frédéric RakotomalalaEmail author
  • Bruno Bakys RalahadyEmail author
  • André TotohasinaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 797)

Abstract

As the literature shows, a data mining is generally based on contingency tables that is on crossing properties variables; it measures statistically the quality of this rule based on nonsignificant number of counterexamples, where rule not verified. We must therefore be able to quantify the significance of these numbers, the consistency of association rule (AR) or classes of rules, the contribution of subjects or categories of subjects to some rules that represent chains of rules and, by a hierarchy, rules on rules that are also called meta-rules.

Keywords

Association rule Normalization Cohesion Statistical implication Hierarchical ascending-oriented classification 

References

  1. 1.
    Srikant AR (1994) Fast algorithms for mining association rules, p 13, s.nGoogle Scholar
  2. 2.
    Bernard JM, Poitrenaud S (1999) L’analyse implicative bayesienne d’un questionnaire binaire: quasi-implications et treillis de galois simplifié. Mathématiques, Informatique et Sciences Humaines 147:2546Google Scholar
  3. 3.
    Lahrer A (1991) Implication statistique et applications l’analyse des demarches de preuve mathematique. Université de RENNES I - U.F.R. de, MathématiquesGoogle Scholar
  4. 4.
    Lerman IC (1981) Classification et analyse ordinale des données, DunodGoogle Scholar
  5. 5.
    Lerman IC (1983) Sur la signification des classes issue d’une classification automatique, Springer. In: J. Felsenstein, esitor, Numerical Taxonomy, pp 179–198Google Scholar
  6. 6.
    Nakache JP, Confais J (2005) Approche pragmatique de la classification, TECHNIPGoogle Scholar
  7. 7.
    Pearl J, Russel S (2000) Bayesian networks. In: Arbib MA (ed) Handbook of brain theory and neural networks. MIT Press, USA. R-277Google Scholar
  8. 8.
    Rakotomalala HF, Totohasina A, Diatta J (2017) Extraction des règles d’associations Mgk-valides avec contribution de Support, Actes des 24èmes rencontres de la Société Francophone de Classification SFC pp 29–32Google Scholar
  9. 9.
    Rakotomalala HF, Totohasina A, Diatta J (2017) Une mesure de cohésion basée sur la mesure de qualité des règles d’association Mgk, Actes des 24èmes rencontres de la Société Francophone de Classification SFC, pp 21–24Google Scholar
  10. 10.
    Ratsimba-Rajohn H (1992) Contribution l’étude de la hiérarchie implicative: application l’analyse de la gestion didactique des phénomènes d’ostension et de contradictions, Université de RENNES I - U.F.R. de Mathématiques, p 210, 232Google Scholar
  11. 11.
    Shannon C (1948) A mathematical theory of communication, s.l.: American Telephone and Telegarph Co., vol 27, pp 379–423;623–656MathSciNetCrossRefGoogle Scholar
  12. 12.
    André T, Henri R, Jean D (2004) une vision unificatrice des mesures de la qualité des règles d’association booléennes et un algorithme efficace d’extraction des règles d’association implicative : Proc. of CARI’04, Hammamet Tunisie, pp 511–518Google Scholar
  13. 13.
    Totohasina A, Feno D (2008) De la qualité des règles d’association: étude comparative des meures MGK et Confiance Actes du 9ème colloque Africain sur la recherche en Informatique et Mathématiques Appliquées, CARI-2008, pp 561–568Google Scholar
  14. 14.
    Karaa WBA, Ashour AS, Sassi DB, Roy P, Kausar N, Dey N, Hassanien A-E, Grosan C, Fahmy Tolba M (eds) (2016) MEDLINE text mining: an enhancement genetic algorithm based approach for document clustering applications of intelligent optimization in biology and medicine: current trends and open problems. Springer International Publishing, pp 267–287Google Scholar
  15. 15.
    Dey N, Ashour AS, Beagum S, Pistola DS, Gospodinov M, Gospodinova P, Tavares JMRS (2015) Parameter Optimization for Local Polynomial Approximation based Intersection Confidence Interval Filter Using Genetic Algorithm: An Application for Brain MRI Image De-Noising Journal of. Imaging 1:60–84CrossRefGoogle Scholar
  16. 16.
    Ch S, Mathur S (2012) Particle swarm optimization trained neural network for aquifer parameter estimation. KSCE Journal of Civil Engineering 16:298–307CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Computer Science Ecole Normale Supérieure Pour l’Enseignement Technique (E.N.S.E.T.)University of AntsirananaAntsirananaMadagascar

Personalised recommendations