Skip to main content

Ferulic Acid: A Natural Antioxidant with Application Towards Neuroprotection Against Alzheimer’s Disease

  • Chapter
  • First Online:
Book cover Functional Food and Human Health

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disorder affecting millions of people worldwide. AD pathology is mainly caused due to the deposition of amyloid beta (Aβ) peptide and upsurge of oxidative stress, the two major factors responsible for AD occurrence and progression. The current treatment strategies available are merely effective and lack long-term benefits against this disease, which necessitates the need for the use of antioxidants for managing/preventing AD pathology. Ferulic acid (FA), a natural antioxidant found in various fruits (such as orange and grapefruit), vegetables (such as broccoli and tomato), coffee beans and barley used in beverages (such as coffee and beer), can be utilized as a natural source of antioxidants against AD. Several studies have pointed towards the protective effects of FA against AD in vitro as well as in vivo. The antioxidant defence system is known to be compromised in AD, whereas the use of FA has been shown to restore the activities of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT) and heme oxygenase-1 (HO-1). FA has also been shown to destabilize the preformed Aβ fibrils both in vitro and in vivo. Several studies have pointed towards the neuroprotective role of FA through modulating the expression of several key proteins such as p38, Hsp70, ERK1/2, foxo3a and Akt, thus playing a key role towards neuroprotection. In addition, FA is also reported to inhibit the inflammatory responses induced by lipopolysaccharides (LPS) in microglia and also shown to modulate the β-secretase activity and improved AD-like pathology in transgenic mice model study. Inhibition of acetylcholinesterase (AChE) activity and restoration of mitochondrial membrane potential by FA has also been reported. Taken together, it is advocated that the use of FA in routine diet may effectively lower the risk of developing AD and can play an important role in managing the disease. In this book chapter, we will try to document and summarize the structure and functional aspects of FA along with the known benefits of it as a neuroprotective agent against AD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alzheimer A (1907) Ueber eine eigenartige Erkrankung der Hirnrinde. Centralblatt fur Nervenheilkunde and Psychiatrie 30:177–179

    Google Scholar 

  2. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    Article  CAS  Google Scholar 

  3. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  Google Scholar 

  4. Wood JG, Mirra SS, Pollock NL, Binder LI (1986) Neurofibrillary tangles of Alzheimer’s disease share antigenic determinants with the axonal microtubule-associated protein tau. Proc Natl Acad Sci 83:4040–4043

    Article  CAS  Google Scholar 

  5. Brion J, Passareiro E, Nunez J, Flament-Durand J (1985) Mise en evidence immunologique de la protein Tau au niveau des lesions de degenerescence neurofibrillaire de la maladie D’ Alzheimer. Arch Biol 95:229–235

    Google Scholar 

  6. Haas C, Selkoe DJ (1993) Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta peptide. Cell 75:1039–1042

    Article  Google Scholar 

  7. Aronis A, Melendez JA, Golan O, Shilo S, Dicter N, Tirosh O (2003) Potentiation of Fas-mediated apoptosis by attenuated production of mitochondria-derived reactive oxygen species. Cell Death Differ 10(3):335–344

    Article  CAS  Google Scholar 

  8. Hroudova J, Singh N, Fisar Z (2014) Mitochondrial dysfunctions in neurodegenerative diseases: relevance to alzheimer’s disease. BioMed Res Int 2014:1–9

    Article  Google Scholar 

  9. Wang X, Fujioka B, Su H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 173(2):470–482

    Article  CAS  Google Scholar 

  10. Kann O, Kovacs R (2007) Mitochondria and neuronal activity. Am J Physiol Cell Physiol 292:C641–C657

    Article  CAS  Google Scholar 

  11. Kaur N, Dhiman M, Perez-Polo JR, Mantha AK (2015a) Ginkgolide B revamps neuroprotective role of apurinic/apyrimidinic endonuclease 1 and mitochondrial oxidative phosphorylation against Aβ(25-35) induced neurotoxicity in human neuroblastoma cells. J Neurosci Res 93(6):938–947

    Article  CAS  Google Scholar 

  12. Kaur N, Sarkar B, Mittal S, Dhiman M, Taglialatela G, Perez-Polo RJ, Mantha AK (2015b) Oxidative stress events and neuronal dysfunction in Alzheimer’s disease: focus on APE1/Ref-1-mediated survival strategies. In: Free radicals in human health and disease. Springer, Noida, pp 175–207

    Google Scholar 

  13. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664

    Article  Google Scholar 

  14. Dexter DT, Carter CJ, Wells FR, Javoy Agid F, Agid Y, Lees A, Marsden CD (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 52(2):381–389

    Article  CAS  Google Scholar 

  15. Bostantjopoulou S, Kyriazis G, Katsarou Z, Kiosseoglou G, Kazis A, Mentenopoulos G (1996) Superoxide dismutase activity in early and advanced Parkinson’s disease. Funct Neurol 12(2):63–68

    Google Scholar 

  16. Zemlan FP, Thienhaus OJ, Bosmann HB (1989) Superoxide dismutase activity in Alzheimer’s disease: possible mechanism for paired helical filament formation. Brain Res 476(1):160–162

    Article  CAS  Google Scholar 

  17. Omar RA, Chyan YJ, Andorn AC, Poeggeler B, Robakis NK, Pappolla MA (1999) Increased expression but reduced activity of antioxidant enzymes in Alzheimer’s disease. J Alzheimer’s Dis 1(3):139–145

    Article  CAS  Google Scholar 

  18. Cudkowicz ME, McKenna YD, Sapp PE, Chin W, Geller B, Hayden DL, Brown RH (1997) Epidemiology of mutations in superoxide dismutase in amyotrophic lateral sclerosis. Ann Neurol 41(2):210–221

    Article  CAS  Google Scholar 

  19. Yoon EJ, Park HJ, Kim GY, Cho H, Choi J, Park H, Jang J, Rhim H, Kang S (2009) Intracellular amyloid beta interacts with SOD1 and impairs the enzymatic activity of SOD1: implications for the pathogenesis of amyotrophic lateral sclerosis. Exp Mol Med 41(9):611–617

    Article  CAS  Google Scholar 

  20. Bjorkhem I, Cedazo-Minguez A, Leoni V, Meaney S (2009) Oxysterols and neurodegenerative diseases. Mol Asp Med 30:171–179

    Article  Google Scholar 

  21. Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51:1302–1319

    Article  CAS  Google Scholar 

  22. Cao Y, Zhang Y, Qi J, Liu R, Zhang H, He L (2015) Ferulic acid inhibits H2O2 induced oxidative stress and inflammation in rat vascular smooth muscle cells via inhibition of the NADPH oxidase and NF-κB pathway. Int Immunopharmacol 28:1018–1025

    Article  CAS  Google Scholar 

  23. Gill I, Kaur S, Kaur N, Dhiman M, Mantha AK (2017) Phytochemical ginkgolide B attenuates amyloid-β1-42 induced oxidative damage and altered cellular responses in human neuroblastoma SH-SY5Y cells. J Alzheimer’s Dis 2017:1–16

    Google Scholar 

  24. Lillenes SM, Stoen M, Gomez-Munoz M, Torp R, Gunther C, Nilsson LNG, Tonjum T (2013) Transient OGG1, APE1, PARP1 and Polβ expression in an Alzheimer’s disease mouse model. Mech Ageing Dev 134:466–477

    Article  Google Scholar 

  25. Kaur N, Sarkar B, Gill I, Kaur S, Mittal S, Dhiman M, Palada PK, Perez-Polo R, Mantha AK (2016) Indian herbs and their therapeutic potential against Alzheimer’s disease: what makes them special. In: Neuroprotective effects of phytochemicals in neurological disorders. Wiley-Blackwell Publisher, New Delhi

    Google Scholar 

  26. D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43:348–361

    PubMed  Google Scholar 

  27. Rechner AR, Pannala AS, Rice-Evans CA (2001) Caffeic acid derivatives in artichoke extract are metabolised to phenolic acids in vivo. Free Radic Res 35:195–202

    Article  CAS  Google Scholar 

  28. Abdul HM, Butterfield DA (2005) Protection against amyloid beta-peptide(1-42)-induced loss of phospholipid asymmetry in synaptosomal membranes by tricyclodecan-9-xanthogenate (D609) and ferulic acid ethyl ester: implications for Alzheimer’s disease. Biochim Biophys Acta 1741:140–148

    Article  Google Scholar 

  29. Lin W, Peng Y, Hou C (2015) Ferulic acid protects PC12 neurons against hypoxia by inhibiting the p-MAPKs and COX-2 pathways. Iran J Basic Med Sci 18:478–484

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mancuso C, Santangelo R (2013) Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 65:185–195

    Article  Google Scholar 

  31. Zhao BL, Li XJ, He RG, Cheng SJ, Xin WJ (1989) Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 14:175–185

    Article  CAS  Google Scholar 

  32. Moosavi F, Hosseini R, Saso L, Firuzi O (2016) Modulation of neurotrophic signaling pathways by polyphenols. Drug Des Dev Ther 10:23–42

    CAS  Google Scholar 

  33. Sultana R, Ravagna A, Abdul HM, Calabrese V, Butterfield DA (2005) Ferulic acid ethyl ester protects neurons against amyloid β-peptide(1-42)-induced oxidative stress and neurotoxicity: relationship to antioxidant activity. J Neurochem 92:749–758

    Article  CAS  Google Scholar 

  34. Fang L, Kraus B, Lehmann J, Heilmann J, Zhang Y, Decker M (2008) Design and synthesis of tacrine-ferulic acid hybrids as multi-potent anti-Alzheimer drug candidates. Bioorg Med Chem Lett 18:2905–2909

    Article  CAS  Google Scholar 

  35. Pi R, Mao X, Chao X, Cheng Z, Liu M, Duan X, Ye M, Chen X, Mei Z, Liu P, Li W, Han Y (2012) Tacrine-6-ferulic acid, a novel multifunctional dimer, inhibits amyloid-β-mediated Alzheimer’s disease-associated pathogenesis in vitro and in vivo. PLoS One 7:1–8

    Google Scholar 

  36. Pan W, Hu K, Bai P, Yu L, Ma Q, Li T, Sang Z (2016) Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 26(10):2539–2543

    Article  CAS  Google Scholar 

  37. Lee KH, Shin BH, Shin KJ, Kim DJ, Yu J (2005) A hybrid molecule that prohibits amyloid fibrils and alleviates neuronal toxicity induced by β-amyloid (1-42). Biochem Biophys Res Commun 328:816–823

    Article  CAS  Google Scholar 

  38. Chen Z, Digiacomo M, Tu Y, Gu Q, Wang S, Yang X, Nesi G (2017) Discovery of novel rivastigmine-hydroxycinnamic acid hybrids as multi-targeted agents for Alzheimer’s disease. Eur J Med Chem 125:784–792

    Article  CAS  Google Scholar 

  39. Graf E (1992) Antioxidant potential of ferulic acid. Free Radic Biol Med 13(4):435–448

    Article  CAS  Google Scholar 

  40. Kanski J, Aksenova M, Stoyanova A, Butterfield DA (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 13:273–281

    Article  CAS  Google Scholar 

  41. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Rev Neurosci 5:S18–S25

    Article  Google Scholar 

  42. Fridovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893(1):13–18

    Article  CAS  Google Scholar 

  43. Bayer TA, Schafer S, Breyhan H, Wirths O, Treiber C, Multhaup G (2006) A vicious circle: role of oxidative stress, intraneuronal Abeta and Cu in Alzheimer’ disease. Clin Neuropathol 25:163–171

    CAS  PubMed  Google Scholar 

  44. Roy S, Metya SK, Sannigrahi S, Rahaman N, Ahmed F (2013) Treatment with ferulic acid to rats with streptozotocin-induced diabetes: effects on oxidative stress, pro-inflammatory cytokines, and apoptosis in the pancreatic β cell. Endocrine 44(2):369–379

    Article  CAS  Google Scholar 

  45. Xu X, Xiao H, Zhao J, Zhao T (2012) Cardioprotective effect of sodium ferulate in diabetic rats. Int J Med Sci 9(4):291–300

    Article  CAS  Google Scholar 

  46. Gerin F, Erman H, Erboga M, Sener U, Yilmaz A, Seyhan H, Gurel A (2016) The effects of ferulic acid against oxidative stress and inflammation in formaldehyde-induced hepatotoxicity. Inflammation 39(4):1377–1386

    Article  CAS  Google Scholar 

  47. Villareal MO, Sasaki K, Margout D, Savry C, Almaksour Z, Larroque M, Isoda H (2016) Neuroprotective effect of Picholine virgin olive oil and its hydroxycinnamic acids component against b-amyloid-induced toxicity in SH-SY5Y neurotypic cells. Cytotechnology 3:1–12

    Google Scholar 

  48. Doss HM, Dey C, Sudandiradoss C, Rasool MK (2016) Targeting inflammatory mediators with ferulic acid, a dietary polyphenol, for the suppression of monosodium urate crystal induced inflammation in rats. Life Sci 148:201–210

    Article  CAS  Google Scholar 

  49. Shen Y, Zhang H, Wang L, Qian H, Qi Y, Miao X, Qi X (2015) Protective effect of ferulic acid against 2, 2′-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in PC12 cells. Cell Mol Biol (Noisy-le-Grand, France) 62(1):109–116

    Google Scholar 

  50. Chong YH, Shin YJ, Lee EO, Kayed R, Glabe CG, Tenner AJ (2006) ERK1/2 activation mediates Aβ oligomer-induced neurotoxicity via caspase-3 activation and tau cleavage in rat organotypic hippocampal slice cultures. J Biol Chem 281(29):20315–20325

    Article  CAS  Google Scholar 

  51. Picone P, Nuzzo D, Carlo MD (2013) Ferulic acid: a natural antioxidant against oxidative stress induced by oligomeric A-beta on sea urchin embryo. Biol Bull 224:18–28

    Article  CAS  Google Scholar 

  52. Hussein AM, Abbas KM, Abulseoud OA, Elhussainy EMA (2017) Effects of ferulic acid on oxidative stress, heat shock protein 70, connexin 43 and monoamines in hippocampus of pentylenetetrazole-kindled rats. Can J Physiol Pharmacol, (ja) 95(6):732–742

    Article  CAS  Google Scholar 

  53. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Finch CE (2000) Inflammation and Alzheimer’s disease. Neurobiol Aging 21(3):383–421

    Article  CAS  Google Scholar 

  54. Kim HS, Cho JY, Kim DH, Yan JJ, Le HK, Suh HW, Song DK (2004) Inhibitory effects of long-term administration of ferulic acid on microglial activation induced by intracerebroventricular injection of β-amyloid peptide (1—42) in mice. Biol Pharm Bull 27(1):120–121

    Article  CAS  Google Scholar 

  55. Huang F, Deng HM, Zhu MM, Xiao F, Yang L, Zhang ZJ, Nie H (2011) Inhibitory effect of ferulic acid on inflammatory response in microglia induced by lipopolysaccharides. Zool Res 32(3):311–316

    CAS  PubMed  Google Scholar 

  56. Mori T, Koyama N, Guillot-Sestier MV, Tan J, Town T (2013) Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. Plos One 8:1–16

    Google Scholar 

  57. Yan JJ, Cho JY, Kim KL, Jung JS, Huh SO, Suh HW, Kim YH, Song DK (2001) Protection against β-amyloid peptide toxicity in vivo with long-term administration of ferulic acid. Br J Parmacol 133:89–96

    Article  CAS  Google Scholar 

  58. Huang H, Hong Q, Tan HL, Xiao CR, Gao Y (2016) Ferulic acid prevents LPS-induced up-regulation of PDE4B and stimulates the cAMP/CREB signaling pathway in PC12 cells. Acta Pharmacol Sin 37:1543–1554

    Article  CAS  Google Scholar 

  59. Chaturvedi RK, Beal MF (2013) Mitochondrial diseases of the brain. Free Radic Biol Med 63:1–29

    Article  CAS  Google Scholar 

  60. Yogeeta SK, Raghavendran HRB, Gnanapragasam A, Subhashini R, Devaki T (2006) Ferulic acid with ascorbic acid synergistically extenuates the mitochondrial dysfunction during β-adrenergic catecholamine induced cardiotoxicity in rats. Chem Biol Interact 163(1):160–169

    Article  CAS  Google Scholar 

  61. Harrison SM, Harper AJ, Hawkins J, Duddy G, Grau E, Pugh PL et al (2003) BACE1 transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol Cell Neurosci 24:646–655

    Article  CAS  Google Scholar 

  62. Castro A, Martinez A (2006) Targeting beta-amyloid pathogenesis through acetylcholinesterase inhibitors. Curr Pharm Des 12(33):4377–4387

    Article  CAS  Google Scholar 

  63. Citron M (2004) Beta-secretase inhibition for the treatment of alzheimer disease-promise and challenge. Trends Pharmacol Sci 25:92–97

    Article  CAS  Google Scholar 

  64. Gilgun-Sherki Y, Melamed E, Offen D (2001) Oxidative stress induced-neurodegenerative diseases: the need for antioxidants that penetrate the blood brain barrier. Neuropharmacology 40(8):959–975

    Article  CAS  Google Scholar 

  65. Hashimoto M, Rockenstein E, Crews L, Masliah E (2003) Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. NeuroMol Med 4(1–2):21–36

    Article  CAS  Google Scholar 

  66. Huang WY, Chao XJ, Ouyang Y, Liu A, He X, Chen M, Wang L, Liu J, Yu S, Rapposelli S, Pi R (2012) Tacrine-6-ferulic acid, a novel multifunctional dimer against Alzheimer’s disease, prevents oxidative stress-induced neuronal death through activating Nrf2/ARE/HO-1 pathway in HT22 cells. CNS Neurosci Ther 18:950–952

    Article  CAS  Google Scholar 

  67. Ma ZC, Hong Q, Wang YG, Liang QD, Tan HL, Xiao CR, Tang XL, Shao S, Zhou SS, Gao Y (2011) Ferulic acid induces heme oxygenase-1 via activation of ERK and Nrf2. Drug Discov Ther 5:299–305

    Article  CAS  Google Scholar 

  68. Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils in vitro. J Neurosci Res 75:742–750

    Article  CAS  Google Scholar 

  69. Sultana R, Butterfield DA (2010) Role of oxidative stress in progression of Alzheimer’s disease. J Alzheimer Dis 19(1):341–353

    Article  Google Scholar 

  70. Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A (2006) Opposing activities protect against age-onset proteotoxicity. Science 313(5793):1604–1610

    Article  CAS  Google Scholar 

  71. Fukuda H, Komamine A (1982) Lignin synthesis and its related enzymes as markers of tracheary-element differentiation in single cells isolated from the mesophyll of Zinnia elegans. Planta 155(5):423–430

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work being supported from the funds recieved from the Department of Science and Technology, New Delhi, India (SR/CSI/288/2012/G), awarded to AKM Junior Research Fellowship (JRF) from University Grants Commission (CSIR-UGC JRF), New Delhi, India, to SK being thankfully acknowledged.

Conflict of Interest

Authors declare that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Mantha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, S., Dhiman, M., Mantha, A.K. (2018). Ferulic Acid: A Natural Antioxidant with Application Towards Neuroprotection Against Alzheimer’s Disease. In: Rani, V., Yadav, U. (eds) Functional Food and Human Health. Springer, Singapore. https://doi.org/10.1007/978-981-13-1123-9_25

Download citation

Publish with us

Policies and ethics