Skip to main content

Which is the Most Reasonable Anti-aging Strategy: Meta-analysis

  • Chapter
  • First Online:
Aging and Aging-Related Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1086))

Abstract

An organism’s lifespan is inevitably accompanied by the aging process, which involves functional decline, a steady increase of a plethora of chronic diseases, and ultimately death. Thus, it has been an ongoing dream of mankind to improve health span and extend the lifespan. In the last century, there is a great increase in the search for eternal youth and an insatiable appetite for methods which could turn back the clock. Survival curves are key components of lifespan experiments. Many interventions have been reported to extend the lifespan, including the administration of pharmaceuticals, calorie restriction, and genetic alteration. However, few studies have attempted to provide a comprehensive analysis of the mechanism by which these various methods function to extend lifespan. We recently collected survival curves from published papers and recovered data by fitting models. The analysis results highlight the overall advantage of calorie restriction and its mimetics in aging and demonstrate that hypoglycemic agents and antioxidants have a superior effect on lifespan extension via a pattern of global integrity compared to other medications. This review provides a scientific foundation for the discovery of effective anti-aging agents and the formulation of scientific anti-aging strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antebi A (2007) Genetics of aging in Caenorhabditis elegans. PLoS Genet 3:1565–1571

    CAS  PubMed  Google Scholar 

  • Anton SD, Martin CK, Redman L, York-Crowe E, Heilbronn LK, Han H, Williamson DA, Ravussin E (2008) Psychosocial and behavioral pre-treatment predictors of weight loss outcomes. Eat Weight Disord 13:30–37

    CAS  PubMed  Google Scholar 

  • Aviv A (2002) Telomeres, sex, reactive oxygen species, and human cardiovascular aging. J Mol Med (Berl) 80:689–695

    CAS  Google Scholar 

  • Baird D, Roger L, Osterman P, Svenson U, Nordfja K (2011) Blood cell telomere length is a dynamic feature. PLoS One 6:e21485

    PubMed  PubMed Central  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bernadotte A, Mikhelson VM, Spivak IM (2016) Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging (Albany NY) 8:3–11

    CAS  Google Scholar 

  • Bernstein C, Bernstein H (2006) Aging and sex, DNA repair in. Rev Cell Biol Mol Med. https://doi.org/10.1002/3527600906.mcb.200200009

  • Carlson LE, Beattie TL, Giese-Davis J, Faris P, Tamagawa R, Fick LJ et al (2014) Mindfulness-based cancer recovery and supportive-expressive therapy maintain telomere length relative to controls in distressed breast cancer survivors. Cancer 121:476–484

    PubMed  Google Scholar 

  • Chin RM, Fu X, Pai MY, Vergnes L, Deng G, Diep S et al (2014) The metabolite alpha-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR. Nature 510:397–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3

    PubMed  Google Scholar 

  • Dirks AJ, Leeuwenburgh C (2006) Calorie restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 127:1–7

    PubMed  Google Scholar 

  • Erol A (2011) Deciphering the intricate regulatory mechanisms for the cellular choice between cell repair apoptosis or senescence in response to damaging signals. Cell Signal 23:1076–1081

    CAS  PubMed  Google Scholar 

  • Everitt AV, Roth GS, Le Couteur DG, Hilmer SN (2005) Caloric restriction versus drug therapy to delay the onset of aging diseases and extend life. Age (Dordr) 27:39–48

    PubMed Central  Google Scholar 

  • Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328:321–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner PR (1997) Superoxide-driven aconitase FE-S center cycling. Biosci Rep 17:33–42

    CAS  PubMed  Google Scholar 

  • Goel MK, Khanna P, Kishore J (2010) Understanding survival analysis: Kaplan-Meier estimate. Int J Ayurveda Res 1:274–278

    PubMed  PubMed Central  Google Scholar 

  • Greider CW, Blackburn EH (1987) The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell 51:887–898

    CAS  PubMed  Google Scholar 

  • Guarente L, Partridge L, Wallace DC (2007) In: Guarente L, Partridge L, Wallace DC (eds) Molecular biology of aging. CSHL Press, New York

    Google Scholar 

  • Hadley EC, Dutta C, Finkelstein J, Harris TB, Lane MA, Roth GS, Sherman SS, Starke-Reed PE (2001) Human implications of caloric restriction’s effect on aging in laboratory animals: an overview of opportunities for research. J Gerontol A Biol Sci Med Sci 56:5–6

    PubMed  Google Scholar 

  • Hanselman D, Littlefield B (1997) Mastering MATLAB 5: a comprehensive tutorial and reference. Prentice Hall PTR, Upper Saddle River

    Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    CAS  PubMed  Google Scholar 

  • Harman D (1972) A biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147

    CAS  PubMed  Google Scholar 

  • Harman D (1981) The aging process. Proc Natl Acad Sci U S A 78:7124–7128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayflick L, Moorhead P (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  PubMed  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009a) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009b) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Google Scholar 

  • Hunt PR, Son TG, Wilson MA, Yu QS, Wood WH, Zhang Y et al (2011) Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms. PLoS One 6:e21922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingle VK, Proakis JG (2011) Digital signal processing using MATLAB. Nelson Engineering, Boston

    Google Scholar 

  • Ingram DK, Anson RM, deCabo R, Mamczarz J, Zhu M, Mattison J, Lane MA, Roth GS (2004) Development of calorie restriction mimetics as a prolongevity strategy. Ann N Y Acad Sci 1019:412–423

    CAS  PubMed  Google Scholar 

  • Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, deCabo R (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5:97–108

    CAS  PubMed  Google Scholar 

  • Jensen K, McClure C, Priest NK, Hunt J (2015) Sex-specific effects of protein and carbohydrate intake on reproduction but not lifespan in Drosophila melanogaster. Aging Cell 14:605–615

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    CAS  PubMed  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447

    CAS  PubMed  Google Scholar 

  • Kirkwood TB, Kowald A (2012) The free-radical theory of ageing-older, wiser and still alive: modelling positional effects of the primary targets of ROS reveals new support. Bioessays 34:692–700

    CAS  PubMed  Google Scholar 

  • Lane MA, Ingram DK, Rogh GS (2002) The serious search for an anti-aging pill. Sci Am 287:36–41

    CAS  PubMed  Google Scholar 

  • Lee KS, Lee BS, Semnani S, Avanesian A, Um CY, Jeon HJ, Seong KM, Yu K, Min KJ, Jafari M (2010) Curcumin extends life span, improves health span, and modulates the expression of age-associated aging genes in Drosophila melanogaster. Rejuvenation Res 13:561–570

    CAS  PubMed  Google Scholar 

  • Liang YR, Liu C, Lu MY, Dong QY, Wang ZM, Wang ZR et al (2018) Calorie restriction is the most reasonable anti-ageing intervention: a meta-analysis of survival curves. Sci Rep 8:5779

    Google Scholar 

  • Lin YH, Chen YC, Kao TY, Lin YC, Hsu TE, Wu YC et al (2014) Diacylglycerol lipase regulates lifespan and oxidative stress response by inversely modulating TOR signaling in Drosophila and C. elegans. Aging Cell 13:755–764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Chiang HH, Louw M, Susanto A, Chen D (2017) Nutrient sensing and the oxidative stress response. Trends Endocrinol Metab 28:449–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M et al (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192

    PubMed  Google Scholar 

  • Mattison JA, Roth GS, Beasley TM, Tilmont EM, Handy AM, Herbert RL et al (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489:318–321

    CAS  PubMed  Google Scholar 

  • Merry BJ (2004) Oxidative stress and mitochondrial function with aging-the effect of calorie restriction. Aging Cell 3:7–12

    CAS  PubMed  Google Scholar 

  • Mikhelson VM, Gamaley IA (2012) Telomere shortening is a sole mechanism of aging in mammals. Curr Aging Sci 5:203–208

    CAS  PubMed  Google Scholar 

  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Lagisz M, Hector KL, Spencer HG (2012) Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11:401–409

    CAS  PubMed  Google Scholar 

  • Olovnikov A (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41:181–190

    CAS  PubMed  Google Scholar 

  • Olovnikov A (1996) Telomeres, telomerase, and aging: origin of the theory. Exp Gerontol 31:443–448

    CAS  PubMed  Google Scholar 

  • Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV et al (2008) Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci U S A 105:2325–2330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poehlman ET, Turturro A, Bodkin N, Cefalu W, Heymsfield S, Holloszy J, Kemnitz J (2001) Caloric restriction mimetics: physical activity and body composition changes. J Gerontol A Biol Sci Med Sci 56:45–54

    PubMed  Google Scholar 

  • Redman LM, Martin CK, Williamson DA, Ravussin E (2008) Effect of caloric restriction in non-obese humans on physiological, psychological and behavioral outcomes. Physiol Behav 94:643–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ristow M, Zarse K (2010) How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp Gerontol 45:410–418

    CAS  PubMed  Google Scholar 

  • Roth GS, Lane MA, Ingram DK (2005) Caloric restriction mimetics: the next phase. Ann N Y Acad Sci 1057:365–371

    CAS  PubMed  Google Scholar 

  • Simons MJP, Koch W, Verhulst S (2013) Dietary restriction of rodents decreases aging rate without affecting initial mortality rate- a meta-analysis. Aging Cell 12:410–414

    CAS  PubMed  Google Scholar 

  • Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC et al (2014) The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 19:418–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224

    CAS  PubMed  Google Scholar 

  • Swindell WR (2012) Dietary restriction in rats and mice: a meta-analysis and review of the evidence for genotype-dependent effects on lifespan. Ageing Res Rev 11:254–270

    PubMed  Google Scholar 

  • Szilard L (1959) On the nature of the ageing process. Proc Natl Acad Sci U S A 45:30–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takubo K, Izumiyama-Shimomura N, Honma N, Sawabe M, Arai T, Kato M et al (2002) Telomere lengths are characteristic in each human individual. Exp Gerontol 37:523–531

    CAS  PubMed  Google Scholar 

  • Testa G, Biasi F, Poli G, Chiarpotto E (2014) Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des 20:2950–2977

    CAS  PubMed  Google Scholar 

  • Tosato M, Zamboni V, Ferrini A, Cesari M (2007) The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2:401–412

    PubMed  PubMed Central  Google Scholar 

  • Vanhooren V, Liber C (2012) The mouse as a model organism in aging research: usefulness, pitfalls and possibilities. Ageing Res Rev 12:8–21

    PubMed  Google Scholar 

  • Verdaguer E, Junyent F, Folch J, Beas-Zarate C, Auladell C, Pallas M et al (2012) Aging biology: a new frontier for drug discovery. Expert Opin Drug Discov 7:217–229

    CAS  PubMed  Google Scholar 

  • Vijg J (2000) Somatic mutations and aging: a re-evaluation. Mutat Res 447:117–135

    CAS  PubMed  Google Scholar 

  • Walker E, Hernandez A, Kattan MW (2008) Meta-analysis: its strength and limitations. Cleve Clin J Med 75:431–439

    PubMed  Google Scholar 

  • Weinert BT, Timiras PS (2003) Theories of aging. J Appl Physiol 95:1706–1716

    CAS  PubMed  Google Scholar 

  • Zanni GR, Wick JY (2011) Telomeres: unlocking the mystery of cell division and aging. Consult Pharm 26:78–90

    PubMed  Google Scholar 

  • Ziehm M, Thornton JM (2013) Unlocking the potential of survival data for model organisms through a new database and online analysis platform: SurvCurv. Aging Cell 12:910–916

    CAS  PubMed  Google Scholar 

  • Ziehm M, Piper MD, Thornton JM (2013) Analysing variation in Drosophila aging across independent experimental studies: a meta-analysis of survival data. Aging Cell 12:917–922

    CAS  PubMed  Google Scholar 

  • Ziehm M, Ivanov DK, Bhat A, Partridge L, Thornton JM (2015) SurvCurv database and online survival analysis platform update. Bioinformatics 31:3878–3880

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the National Natural Science Foundation of China (81471396), the National Key R&D Program of China (2018YFD0400204), the Key International S&T Cooperation Program of China (2016YFE113700), and the European Union’s 2020 Research and Innovation Program (633589).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liang, Y., Wang, Z. (2018). Which is the Most Reasonable Anti-aging Strategy: Meta-analysis. In: Wang, Z. (eds) Aging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, vol 1086. Springer, Singapore. https://doi.org/10.1007/978-981-13-1117-8_17

Download citation

Publish with us

Policies and ethics