Skip to main content

Pharmaceutical Intervention of Aging

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1086))

Abstract

The aging population represents a significant worldwide socioeconomic challenge. Aging is an inevitable and multifactorial biological process and primary risk factor for most age-related diseases, such as cardiovascular diseases, cancers, type 2 diabetes mellitus (T2DM), and neurodegenerative diseases. Pharmacological interventions targeting aging appear to be a more effective approach in preventing age-related disorders compared with the treatments targeted to specific disease. In this chapter, we focus on the latest findings on molecular compounds that mimic caloric restriction (CR), supplement nicotinamide adenine dinucleotide (NAD+) levels, and eliminate senescent cells, including metformin, resveratrol, spermidine, rapamycin, NAD+ boosters, as well as senolytics. All these interventions modulate the determinants and pathways responsible for aging/longevity, such as the kinase target of rapamycin (TOR), AMP-activated protein kinase (AMPK), sirtuins, and insulin-like growth factor (IGF-1) signaling (Fig. 15.1).

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   96.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   121.31
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR   168.79
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anisimov VN, Berstein LM, Egormin PA, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Yurova MV, Kovalenko IG, Poroshina TE et al (2008) Metformin slows down aging and extends life span of female SHR mice. Cell Cycle 7:2769–2773

    Article  CAS  PubMed  Google Scholar 

  • Anisimov VN, Piskunova TS, Popovich IG, Zabezhinski MA, Tyndyk ML, Egormin PA, Yurova MV, Rosenfeld SV, Semenchenko AV, Kovalenko IG et al (2010) Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice. Aging 2:945–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Kovalenko IG et al (2011) If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging 3:148–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baar MP, Brandt RM, Putavet DA, Klein JD, Derks KW, Bourgeois BR, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA et al (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132–147 e116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey CJ, Turner RC (1996) Metformin. N Engl J Med 334:574–579

    Article  CAS  PubMed  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baksi A, Kraydashenko O, Zalevkaya A, Stets R, Elliott P, Haddad J, Hoffmann E, Vlasuk GP, Jacobson EW (2014) A phase II, randomized, placebo-controlled, double-blind, multi-dose study of SRT2104, a SIRT1 activator, in subjects with type 2 diabetes. Br J Clin Pharmacol 78:69–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balan V, Miller GS, Kaplun L, Balan K, Chong ZZ, Li F, Kaplun A, VanBerkum MF, Arking R, Freeman DC et al (2008) Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem 283:27810–27819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass TM, Weinkove D, Houthoofd K, Gems D, Partridge L (2007) Effects of resveratrol on lifespan in Drosophila melanogaster and Caenorhabditis elegans. Mech Ageing Dev 128:546–552

    Article  CAS  PubMed  Google Scholar 

  • Bauer JH, Goupil S, Garber GB, Helfand SL (2004) An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster. Proc Natl Acad Sci U S A 101:12980–12985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493–506

    Article  CAS  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman AY, Motechin RA, Wiesenfeld MY, Holz MK (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:35

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjedov I, Toivonen JM, Kerr F, Slack C, Jacobson J, Foley A, Partridge L (2010) Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab 11:35–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown KD, Maqsood S, Huang JY, Pan Y, Harkcom W, Li W, Sauve A, Verdin E, Jaffrey SR (2014) Activation of SIRT3 by the NAD(+) precursor nicotinamide riboside protects from noise-induced hearing loss. Cell Metab 20:1059–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ et al (2011) Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477:482–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler J, Kalogeropoulos A, Georgiopoulou V, Belue R, Rodondi N, Garcia M, Bauer DC, Satterfield S, Smith AL, Vaccarino V et al (2008) Incident heart failure prediction in the elderly: the health ABC heart failure score. Circ Heart Fail 1:125–133

    Article  PubMed  PubMed Central  Google Scholar 

  • Calvert S, Tacutu R, Sharifi S, Teixeira R, Ghosh P, de Magalhaes JP (2016) A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans. Aging Cell 15:256–266

    Article  CAS  PubMed  Google Scholar 

  • Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P et al (2012) The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15:838–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carames B, Kiosses WB, Akasaki Y, Brinson DC, Eap W, Koziol J, Lotz MK (2013) Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum 65:1843–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W et al (2016a) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78–83

    Article  CAS  PubMed  Google Scholar 

  • Chang Y, Li Y, Ye N, Guo X, Li Z, Sun G, Sun Y (2016b) Atorvastatin inhibits the apoptosis of human umbilical vein endothelial cells induced by angiotensin II via the lysosomal-mitochondrial axis. Apoptosis : Int J Programmed Cell Death 21:977–996

    Article  CAS  Google Scholar 

  • Chauhan D, Bandi M, Singh AV, Ray A, Raje N, Richardson P, Anderson KC (2011) Preclinical evaluation of a novel SIRT1 modulator SRT1720 in multiple myeloma cells. Br J Haematol 155:588–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Liu, Y., Liu, Y., Zheng, P. (2009). mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2, ra75

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Ou Y, Li Y, Hu S, Shao LW, Liu Y (2017). Metformin extends C. elegans lifespan through lysosomal pathway. Elife. 6. pii: e31268

    Google Scholar 

  • Collier CA, Bruce CR, Smith AC, Lopaschuk G, Dyck DJ (2006) Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am J Phys Endocrinol Metab 291:E182–E189

    Article  CAS  Google Scholar 

  • Colman RJ, Anderson RM, Johnson SC, Kastman EK, Kosmatka KJ, Beasley TM, Allison DB, Cruzen C, Simmons HA, Kemnitz JW et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325:201–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craveiro M, Cretenet G, Mongellaz C, Matias MI, Caron O, de Lima MCP, Zimmermann VS, Solary E, Dardalhon V, Dulic V et al (2017) Resveratrol stimulates the metabolic reprogramming of human CD4+ T cells to enhance effector function. Sci Signal 10

    Article  PubMed  CAS  Google Scholar 

  • Cuyàs E, Fernández-Arroyo S, Verdura S, García RÁ, Stursa J, Werner L, Blanco-González E, Montes-Bayón M, Joven J, Viollet B et al (2018) Metformin regulates global DNA methylation via mitochondrial onecarbon metabolism. Oncogene 37(7):963–970

    Article  PubMed  CAS  Google Scholar 

  • de Cabo R, Carmona-Gutierrez D, Bernier M, Hall MN, Madeo F (2014) The search for antiaging interventions: from elixirs to fasting regimens. Cell 157:1515–1526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Magalhaes JP, Budovsky A, Lehmann G, Costa J, Li Y, Fraifeld V, Church GM (2009) The human ageing genomic resources: online databases and tools for biogerontologists. Aging Cell 8:65–72

    Article  PubMed  CAS  Google Scholar 

  • Dirks AJ, Leeuwenburgh C (2004) Aging and lifelong calorie restriction result in adaptations of skeletal muscle apoptosis repressor, apoptosis-inducing factor, X-linked inhibitor of apoptosis, caspase-3, and caspase-12. Free Radic Biol Med 36:27–39

    Article  CAS  PubMed  Google Scholar 

  • Dirks AJ, Leeuwenburgh C (2006) Caloric restriction in humans: potential pitfalls and health concerns. Mech Ageing Dev 127:1–7

    Article  PubMed  Google Scholar 

  • Eisenberg T, Knauer H, Schauer A, Buttner S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L et al (2009) Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 11:1305–1314

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg T, Abdellatif M, Schroeder S, Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann A, Schmidt A et al (2016) Cardioprotection and lifespan extension by the natural polyamine spermidine. Nat Med 22:1428–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Escande C, Nin V, Price NL, Capellini V, Gomes AP, Barbosa MT, O’Neil L, White TA, Sinclair DA, Chini EN (2013) Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes 62:1084–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T, Nilsen H, Mitchell JR, Croteau DL, Bohr VA (2014) Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157:882–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, Kassahun H, Croteau DL, Scheibye-Knudsen M, Marosi K, Lu H, Shamanna RA, Kalyanasundaram S, Bollineni RC, Wilson MA et al (2016) NAD+ replenishment improves lifespan and Healthspan in Ataxia telangiectasia models via Mitophagy and DNA repair. Cell Metab 24:566–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, Lautrup S, Hou Y, Demarest TG, Croteau DL, Mattson MP, Bohr VA (2017) NAD+ in aging: molecular mechanisms and translational implications. Trends Mol Med 23:899–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiori JL, Shin YK, Kim W, Krzysik-Walker SM, Gonzalez-Mariscal I, Carlson OD, Sanghvi M, Moaddel R, Farhang K, Gadkaree SK et al (2013) Resveratrol prevents beta-cell dedifferentiation in nonhuman primates given a high-fat/high-sugar diet. Diabetes 62:3500–3513

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontana L, Klein S, Holloszy JO (2010) Effects of long-term calorie restriction and endurance exercise on glucose tolerance, insulin action, and adipokine production. Age 32:97–108

    Article  CAS  PubMed  Google Scholar 

  • Frederick DW, Loro E, Liu L, Davila A Jr, Chellappa K, Silverman IM, Quinn WJ 3rd, Gosai SJ, Tichy ED, Davis JG et al (2016) Loss of NAD homeostasis leads to progressive and reversible degeneration of skeletal muscle. Cell Metab 24:269–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk JA, Odejinmi S, Schnellmann RG (2010) SRT1720 induces mitochondrial biogenesis and rescues mitochondrial function after oxidant injury in renal proximal tubule cells. J Pharmacol Exp Ther 333:593–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta VK, Scheunemann L, Eisenberg T, Mertel S, Bhukel A, Koemans TS, Kramer JM, Liu KS, Schroeder S, Stunnenberg HG et al (2013) Restoring polyamines protects from age-induced memory impairment in an autophagy-dependent manner. Nat Neurosci 16:1453–1460

    Article  CAS  PubMed  Google Scholar 

  • Haffner CD, Becherer JD, Boros EE, Cadilla R, Carpenter T, Cowan D, Deaton DN, Guo Y, Harrington W, Henke BR et al (2015) Discovery, synthesis, and biological evaluation of Thiazoloquin(az)olin(on)es as potent CD38 inhibitors. J Med Chem 58:3548–3571

    Article  CAS  PubMed  Google Scholar 

  • Haigis MC, Guarente LP (2006) Mammalian sirtuins – emerging roles in physiology, aging, and calorie restriction. Genes Dev 20:2913–2921

    Article  CAS  PubMed  Google Scholar 

  • Halloran J, Hussong SA, Burbank R, Podlutskaya N, Fischer KE, Sloane LB, Austad SN, Strong R, Richardson A, Hart MJ et al (2012) Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223:102–113

    Article  CAS  PubMed  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hausenblas HA, Schoulda JA, Smoliga JM (2015) Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus – systematic review and meta-analysis. Mol Nutr Food Res 59:147–159

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann E, Wald J, Lavu S, Roberts J, Beaumont C, Haddad J, Elliott P, Westphal C, Jacobson E (2013) Pharmacokinetics and tolerability of SRT2104, a first-in-class small molecule activator of SIRT1, after single and repeated oral administration in man. Br J Clin Pharmacol 75:186–196

    Article  CAS  PubMed  Google Scholar 

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, Zipkin RE, Chung P, Kisielewski A, Zhang LL et al (2003) Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425:191–196

    Article  CAS  PubMed  Google Scholar 

  • Ingram DK, Zhu M, Mamczarz J, Zou S, Lane MA, Roth GS, deCabo R (2006) Calorie restriction mimetics: an emerging research field. Aging Cell 5:97–108

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH, Sossong AM, Ward TM, Younts CM, Lewis K, Allard JS et al (2013) Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab 18:533–545

    Article  CAS  PubMed  Google Scholar 

  • Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M (2007) Longevity genomics across species. Curr Genomics 8:73–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Kang HT, Hwang ES (2006) 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci 78:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol : CB 14:885–890

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Khapre RV, Kondratova AA, Patel S, Dubrovsky Y, Wrobel M, Antoch MP, Kondratov RV (2014) BMAL1-dependent regulation of the mTOR signaling pathway delays aging. Aging 6:48–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kickstein E, Krauss S, Thornhill P, Rutschow D, Zeller R, Sharkey J, Williamson R, Fuchs M, Kohler A, Glossmann H et al (2010) Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci U S A 107:21830–21835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YD, Park KG, Lee YS, Park YY, Kim DK, Nedumaran B, Jang WG, Cho WJ, Ha J, Lee IK et al (2008) Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57:306–314

    Article  CAS  PubMed  Google Scholar 

  • Kirkland JL, Peterson C (2009) Healthspan, translation, and new outcomes for animal studies of aging. J Gerontol Ser A, Biol Sci Med Sci 64:209–212

    Article  Google Scholar 

  • Kjaer TN, Ornstrup MJ, Poulsen MM, Stodkilde-Jorgensen H, Jessen N, Jorgensen JOL, Richelsen B, Pedersen SB (2017) No beneficial effects of resveratrol on the metabolic syndrome: a randomized placebo-controlled clinical trial. J Clin Endocrinol Metab 102:1642–1651

    Article  PubMed  Google Scholar 

  • Krueger JG, Suarez-Farinas M, Cueto I, Khacherian A, Matheson R, Parish LC, Leonardi C, Shortino D, Gupta A, Haddad J et al (2015) A randomized, placebo-controlled study of SRT2104, a SIRT1 activator, in patients with moderate to severe psoriasis. PLoS One 10:e0142081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kulkarni SR, Soroka CJ, Hagey LR, Boyer JL (2016) Sirtuin 1 activation alleviates cholestatic liver injury in a cholic acid-fed mouse model of cholestasis. Hepatology 64:2151–2164

    Article  CAS  PubMed  Google Scholar 

  • Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P et al (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122

    Article  CAS  PubMed  Google Scholar 

  • Lahusen TJ, Deng CX (2015) SRT1720 induces lysosomal-dependent cell death of breast cancer cells. Mol Cancer Ther 14:183–192

    Article  CAS  PubMed  Google Scholar 

  • Lamming DW, Ye L, Sabatini DM, Baur JA (2013) Rapalogs and mTOR inhibitors as anti-aging therapeutics. J Clin Invest 123:980–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Q, Liu Y, Sun M (2017) Autophagy and Alzheimer’s disease. Cell Mol Neurobiol 37:377–388

    Article  CAS  PubMed  Google Scholar 

  • Libri V, Brown AP, Gambarota G, Haddad J, Shields GS, Dawes H, Pinato DJ, Hoffman E, Elliot PJ, Vlasuk GP et al (2012) A pilot randomized, placebo controlled, double blind phase I trial of the novel SIRT1 activator SRT2104 in elderly volunteers. PLoS One 7:e51395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lushchak O, Strilbytska O, Piskovatska V, Storey KB, Koliada A, Vaiserman A (2017) The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev 164:127–138

    Article  CAS  PubMed  Google Scholar 

  • Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ et al (2014) Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510:542–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mair W, Goymer P, Pletcher SD, Partridge L (2003) Demography of dietary restriction and death in Drosophila. Science 301:1731–1733

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjun V, Swift J (2016) Therapeutic manipulation of ageing: repurposing old dogs and discovering new tricks. EBioMedicine 14:24–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ et al (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y (2011) Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS One 6:e23652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattison JA, Wang M, Bernier M, Zhang J, Park SS, Maudsley S, An SS, Santhanam L, Martin B, Faulkner S et al (2014) Resveratrol prevents high fat/sucrose diet-induced central arterial wall inflammation and stiffening in nonhuman primates. Cell Metab 20:183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melendez A, Talloczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    Article  CAS  PubMed  Google Scholar 

  • Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M, Gomes AP, Scheibye-Knudsen M, Palacios HH, Licata JJ, Zhang Y et al (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meric-Bernstam F, Gonzalez-Angulo AM (2009) Targeting the mTOR signaling network for cancer therapy. J Clin Oncol : Off J Am Soc Clin Oncol 27:2278–2287

    Article  CAS  Google Scholar 

  • Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF et al (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol Ser A, Biol Sci Med Sci 66:191–201

    Article  CAS  Google Scholar 

  • Mills RE, Taylor KR, Podshivalova K, McKay DB, Jameson JM (2008) Defects in skin gamma delta T cell function contribute to delayed wound repair in rapamycin-treated mice. J Immunol 181:3974–3983

    Article  CAS  PubMed  Google Scholar 

  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450:712–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minor RK, Baur JA, Gomes AP, Ward TM, Csiszar A, Mercken EM, Abdelmohsen K, Shin YK, Canto C, Scheibye-Knudsen M et al (2011) SRT1720 improves survival and healthspan of obese mice. Sci Rep 1:70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA et al (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6:836–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morselli E, Maiuri MC, Markaki M, Megalou E, Pasparaki A, Palikaras K, Criollo A, Galluzzi L, Malik SA, Vitale I et al (2010) Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis e10:1

    Google Scholar 

  • Morselli E, Marino G, Bennetzen MV, Eisenberg T, Megalou E, Schroeder S, Cabrera S, Benit P, Rustin P, Criollo A et al (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J Cell Biol 192:615–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouchiroud L, Houtkooper RH, Auwerx J (2013) NAD(+) metabolism: a therapeutic target for age-related metabolic disease. Crit Rev Biochem Mol Biol 48:397–408

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Chellappa K, Moffitt A, Ndungu J, Dellinger RW, Davis JG, Agarwal B, Baur JA (2017) Nicotinamide adenine dinucleotide biosynthesis promotes liver regeneration. Hepatology 65:616–630

    Article  CAS  PubMed  Google Scholar 

  • Nikolai S, Pallauf K, Huebbe P, Rimbach G (2015) Energy restriction and potential energy restriction mimetics. Nutr Res Rev 28:100–120

    Article  CAS  PubMed  Google Scholar 

  • North BJ, Rosenberg MA, Jeganathan KB, Hafner AV, Michan S, Dai J, Baker DJ, Cen Y, Wu LE, Sauve AA et al (2014) SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J 33:1438–1453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olshansky SJ (2006) Commentary: prescient visions of public health from Cornaro to Breslow. Int J Epidemiol 35:22–23

    Article  PubMed  Google Scholar 

  • Pan KZ, Palter JE, Rogers AN, Olsen A, Chen D, Lithgow GJ, Kapahi P (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6:111–119

    Article  CAS  PubMed  Google Scholar 

  • Papanas N, Maltezos E (2009) Oral antidiabetic agents: anti-atherosclerotic properties beyond glucose lowering? Curr Pharm Des 15:3179–3192

    Article  CAS  PubMed  Google Scholar 

  • Partridge L, Gems D, Withers DJ (2005) Sex and death: what is the connection? Cell 120:461–472

    Article  CAS  PubMed  Google Scholar 

  • Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K (2011) Clinical trials of resveratrol. Ann N Y Acad Sci 1215:161–169

    Article  CAS  PubMed  Google Scholar 

  • Pearson KJ, Lewis KN, Price NL, Chang JW, Perez E, Cascajo MV, Tamashiro KL, Poosala S, Csiszar A, Ungvari Z et al (2008) Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc Natl Acad Sci U S A 105:2325–2330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilmore HL (2010) Review: metformin: potential benefits and use in chronic kidney disease. Nephrology 15:412–418

    Article  CAS  PubMed  Google Scholar 

  • Poulsen MM, Vestergaard PF, Clasen BF, Radko Y, Christensen LP, Stodkilde-Jorgensen H, Moller N, Jessen N, Pedersen SB, Jorgensen JO (2013) High-dose resveratrol supplementation in obese men: an investigator-initiated, randomized, placebo-controlled clinical trial of substrate metabolism, insulin sensitivity, and body composition. Diabetes 62:1186–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pucciarelli S, Moreschini B, Micozzi D, De Fronzo GS, Carpi FM, Polzonetti V, Vincenzetti S, Mignini F, Napolioni V (2012) Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res 15:590–595

    Article  CAS  PubMed  Google Scholar 

  • Rivero-Rios P, Madero-Perez J, Fernandez B, Hilfiker S (2016) Targeting the autophagy/lysosomal degradation pathway in Parkinson's disease. Curr Neuropharmacol 14:238–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682–695

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S (2013) Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab 18:416–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheibye-Knudsen M, Mitchell SJ, Fang EF, Iyama T, Ward T, Wang J, Dunn CA, Singh N, Veith S, Hasan-Olive MM et al (2014) A high-fat diet and NAD(+) activate Sirt1 to rescue premature aging in cockayne syndrome. Cell Metab 20:840–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulz TJ, Zarse K, Voigt A, Urban N, Birringer M, Ristow M (2007) Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab 6:280–293

    Article  CAS  PubMed  Google Scholar 

  • Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI, Claret M, Al-Qassab H, Carmignac D, Ramadani F et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shioi T, McMullen JR, Tarnavski O, Converso K, Sherwood MC, Manning WJ, Izumo S (2003) Rapamycin attenuates load-induced cardiac hypertrophy in mice. Circulation 107:1664–1670

    Article  CAS  PubMed  Google Scholar 

  • Sigrist SJ, Carmona-Gutierrez D, Gupta VK, Bhukel A, Mertel S, Eisenberg T, Madeo F (2014) Spermidine-triggered autophagy ameliorates memory during aging. Autophagy 10:178–179

    Article  CAS  PubMed  Google Scholar 

  • Slack C, Foley A, Partridge L (2012) Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS One 7:e47699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DL Jr, Elam CF Jr, Mattison JA, Lane MA, Roth GS, Ingram DK, Allison DB (2010) Metformin supplementation and life span in Fischer-344 rats. J Gerontol Ser A, Biol Sci Med Sci 65:468–474

    Article  CAS  Google Scholar 

  • Soda K, Dobashi Y, Kano Y, Tsujinaka S, Konishi F (2009) Polyamine-rich food decreases age-associated pathology and mortality in aged mice. Exp Gerontol 44:727–732

    Article  CAS  PubMed  Google Scholar 

  • Spindler SR (2005) Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech Ageing Dev 126:960–966

    Article  CAS  PubMed  Google Scholar 

  • Stanfel MN, Shamieh LS, Kaeberlein M, Kennedy BK (2009) The TOR pathway comes of age. Biochim Biophys Acta 1790:1067–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Timmers S, Auwerx J, Schrauwen P (2012) The journey of resveratrol from yeast to human. Aging 4:146–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Tome-Carneiro J, Larrosa M, Gonzalez-Sarrias A, Tomas-Barberan FA, Garcia-Conesa MT, Espin JC (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trammell SA, Schmidt MS, Weidemann BJ, Redpath P, Jaksch F, Dellinger RW, Li Z, Abel ED, Migaud ME, Brenner C (2016) Nicotinamide riboside is uniquely and orally bioavailable in mice and humans. Nat Commun 7:12948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tummala KS, Gomes AL, Yilmaz M, Grana O, Bakiri L, Ruppen I, Ximenez-Embun P, Sheshappanavar V, Rodriguez-Justo M, Pisano DG et al (2014) Inhibition of de novo NAD(+) synthesis by oncogenic URI causes liver tumorigenesis through DNA damage. Cancer Cell 26:826–839

    Article  CAS  PubMed  Google Scholar 

  • Turner RS, Thomas RG, Craft S, van Dyck CH, Mintzer J, Reynolds BA, Brewer JB, Rissman RA, Raman R, Aisen PS et al (2015) A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 85:1383–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzano DR, Terzibasi E, Genade T, Cattaneo A, Domenici L, Cellerino A (2006) Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Curr Biol : CB 16:296–300

    Article  CAS  PubMed  Google Scholar 

  • van der Meer AJ, Scicluna BP, Moerland PD, Lin J, Jacobson EW, Vlasuk GP, van der Poll T (2015) The selective Sirtuin 1 activator SRT2104 reduces endotoxin-induced cytokine release and coagulation activation in humans. Crit Care Med 43:e199–e202

    Article  PubMed  CAS  Google Scholar 

  • Venkatasubramanian S, Noh RM, Daga S, Langrish JP, Joshi NV, Mills NL, Hoffmann E, Jacobson EW, Vlasuk GP, Waterhouse BR et al (2013) Cardiovascular effects of a novel SIRT1 activator, SRT2104, in otherwise healthy cigarette smokers. J Am Heart Assoc 2:e000042

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verdin E (2015) NAD(+) in aging, metabolism, and neurodegeneration. Science 350:1208–1213

    Article  CAS  PubMed  Google Scholar 

  • Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2012) Cellular and molecular mechanisms of metformin: an overview. Clin Sci 122:253–270

    Article  CAS  Google Scholar 

  • Weidele K, Beneke S, Burkle A (2017) The NAD+ precursor nicotinic acid improves genomic integrity in human peripheral blood mononuclear cells after X-irradiation. DNA Repair 52:12–23

    Article  CAS  PubMed  Google Scholar 

  • Weimer S, Priebs J, Kuhlow D, Groth M, Priebe S, Mansfeld J, Merry TL, Dubuis S, Laube B, Pfeiffer AF et al (2014) D-glucosamine supplementation extends life span of nematodes and of ageing mice. Nat Commun 5:3563

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm T, Byrne J, Medina R, Kolundzic E, Geisinger J, Hajduskova M, Tursun B, Richly H (2017) Neuronal inhibition of the autophagy nucleation complex extends life span in post-reproductive C. elegans. Genes Dev 31:1561–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams PA, Harder JM, Foxworth NE, Cochran KE, Philip VM, Porciatti V, Smithies O, John SW (2017) Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 355:756–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witte AV, Kerti L, Margulies DS, Floel A (2014) Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. J Neurosci : Off J Soc Neurosci 34:7862–7870

    Article  CAS  Google Scholar 

  • Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Barrientos T, Mao L, Rockman HA, Sauve AA, Andrews NC (2015) Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep 13:533–545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamazaki Y, Usui I, Kanatani Y, Matsuya Y, Tsuneyama K, Fujisaka S, Bukhari A, Suzuki H, Senda S, Imanishi S et al (2009) Treatment with SRT1720, a SIRT1 activator, ameliorates fatty liver with reduced expression of lipogenic enzymes in MSG mice. Am J Phys Endocrinol Metab 297:E1179–E1186

    Article  CAS  Google Scholar 

  • Yang Y, Chen S, Zhang Y, Lin X, Song Y, Xue Z, Qian H, Wang S, Wan G, Zheng X et al (2017) Induction of autophagy by spermidine is neuroprotective via inhibition of caspase 3-mediated Beclin 1 cleavage. Cell Death Dis 8:e2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao J, Chen S, Mao Z, Cadenas E, Brinton RD (2011) 2-deoxy-D-glucose treatment induces ketogenesis, sustains mitochondrial function, and reduces pathology in female mouse model of Alzheimer’s disease. PLoS One 6:e21788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R et al (2016) Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 7:11190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshino J, Mills KF, Yoon MJ, Imai S (2011) Nicotinamide mononucleotide, a key NAD(+) intermediate, treats the pathophysiology of diet- and age-induced diabetes in mice. Cell Metab 14:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yue F, Li W, Zou J, Jiang X, Xu G, Huang H, Liu L (2017) Spermidine prolongs lifespan and prevents liver fibrosis and hepatocellular carcinoma by activating MAP 1S-mediated autophagy. Cancer Res 77:2938–2951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, D’Amico D, Ropelle ER, Lutolf MP, Aebersold R et al (2016) NAD(+) repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352:1436–1443

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M et al (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB et al (2016) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15:428–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qian, M., Liu, B. (2018). Pharmaceutical Intervention of Aging. In: Wang, Z. (eds) Aging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, vol 1086. Springer, Singapore. https://doi.org/10.1007/978-981-13-1117-8_15

Download citation

Publish with us

Policies and ethics