Skip to main content

Ovarian Aging and Osteoporosis

  • Chapter
  • First Online:
Book cover Aging and Aging-Related Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1086))

Abstract

Osteoporosis is the most common bone metabolic disease with a very high morbidity, and women usually got a higher risk of osteoporosis than men. The high incidence rate of osteoporosis in women was mainly caused by (1) women having fewer skeletons and bone mass, (2) pregnancy consuming a large amount of calcium and other nutrients, and most importantly (3) the cease of estrogen secretion by ovaries after menopause. Along with ovarian aging, the follicle pool gradually declines and the oocyte quality reduced, accompanied with decline in serum estrogen. Estrogen deficiency plays an important role in the pathogenesis of postmenopausal osteoporosis; it is mainly a result of the recognition that estrogen regulates bone remodeling by modulating the production of cytokines and growth factors from bone marrow and bone cells. This review will summarize current knowledge concerning ovarian aging and postmenopause osteoporosis and also discuss clinical treatment and new ideas of drug development for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aksay IA, Trau M, Manne S, Honma I, Yao N, Zhou L, Fenter P, Eisenberger PM, Gruner SM (1996) Biomimetic pathways for assembling inorganic thin films. Science 273:892–898

    CAS  PubMed  Google Scholar 

  • Albright F, Smith PH, Richardson AM (1941) Postmenopausal osteoporosis. Br J Hosp Med 38:2465–2474

    Google Scholar 

  • Almqvist N, Thomson NH, Smith BL, Stucky GD, Morse DE, Hansma PK (1999) Methods for fabricating and characterizing a new generation of biomimetic materials. Mater Sci Eng C 7:37–43

    Google Scholar 

  • Atlan G, Balmain N, Berland S, Vidal B, Lopez E (1997) Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. C R Acad Sci III 320:253–258

    CAS  PubMed  Google Scholar 

  • Atlan G, Delattre O, Berland S, LeFaou A, Nabias G, Cot D, Lopez E (1999) Interface between bone and nacre implants in sheep. Biomaterials 20:1017–1022

    CAS  PubMed  Google Scholar 

  • Baker TG (1963) A quantitative and cytological study of germ cells in human ovaries. Proc R Soc Lond B Biol Sci 158:417–433

    CAS  PubMed  Google Scholar 

  • Battaglia DE, Goodwin P, Klein NA, Soules MR (1996) Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod 11:2217–2222

    CAS  PubMed  Google Scholar 

  • Berland S, Delattre O, Borzeix S, Catonne Y, Lopez E (2005) Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials 26:2767–2773

    CAS  PubMed  Google Scholar 

  • Block E (1952) Quantitative morphological investigations of the follicular system in women; variations at different ages. Acta Anat (Basel) 14:108–123

    CAS  Google Scholar 

  • Block E (1953) A quantitative morphological investigation of the follicular system in newborn female infants. Acta Anat (Basel) 17:201–206

    CAS  Google Scholar 

  • Boyce BF, Hughes DE, Tiffee J, Li HH, Dai A, Mundy GR (1996) Estrogen replacement therapy prevents bone loss, in part. by promoting osteoclast apoptosis. Biochem Soc Trans 24:613S.611–613S613S

    Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337

    CAS  PubMed  Google Scholar 

  • Broekmans FJ, Soules MR, Fauser BC (2009) Ovarian aging: mechanisms and clinical consequences. Endocr Rev 30:465–493

    CAS  PubMed  Google Scholar 

  • Bronner F, Worrell RV (1999) Orthopaedics: principles of basic and clinical science. CRC Press, Boca Raton

    Google Scholar 

  • Chaturvedi R, Singha PK, Dey S (2013) Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation. PLoS One 8:e84584

    PubMed  PubMed Central  Google Scholar 

  • Chen KM, Ge BF, Liu XY, Ma PH, Lu MB, Bai MH, Wang Y (2007) Icariin inhibits the osteoclast formation induced by RANKL and macrophage-colony stimulating factor in mouse bone marrow culture. Pharmazie 62:388

    CAS  PubMed  Google Scholar 

  • Cooper LF, Tiffee JC, Griffin JP, Hamano H, Guo Z (2000) Estrogen-induced resistance to osteoblast apoptosis is associated with increased hsp27 expression. J Cell Physiol 185:401–407

    CAS  PubMed  Google Scholar 

  • Cowin SC (2001) Bone mechanics handbook. CRC Press 56:672–689

    Google Scholar 

  • Duplat D, Gallet M, Berland S, Marie A, Dubost L, Rousseau M, Kamel S, Milet C, Brazier M, Lopez E et al (2007) The effect of molecules in mother-of-pearl on the decrease in bone resorption through the inhibition of osteoclast cathepsin K. Biomaterials 28:4769–4778

    CAS  PubMed  Google Scholar 

  • Eppig JJ, O’Brien MJ (1996) Development in vitro of mouse oocytes from primordial follicles. Biol Reprod 54:197–207

    CAS  PubMed  Google Scholar 

  • Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241:84–86

    CAS  PubMed  Google Scholar 

  • Ernst M, Froesch ER (1988) Enhanced osteoblast proliferation and collagen gene expression by estradiol. Proc Natl Acad Sci USA 85:2307–2310

    CAS  PubMed  Google Scholar 

  • Faddy MJ (2000) Follicle dynamics during ovarian ageing. Mol Cell Endocrinol 163:43–48

    CAS  PubMed  Google Scholar 

  • Faddy MJ, Gosden RG (1996) A model conforming the decline in follicle numbers to the age of menopause in women. Hum Reprod 11:1484–1486

    CAS  PubMed  Google Scholar 

  • Falini G, Sartor G, Fabbri D, Vergni P, Fermani S, Belcher AM, Stucky GD, Morse DE (2011) The interstitial crystal-nucleating sheet in molluscan Haliotis rufescens shell: a bio-polymeric composite. J Struct Biol 173:128–137

    CAS  PubMed  Google Scholar 

  • Golob AL, Laya MB (2015) Osteoporosis: screening, prevention, and management. Med Clin N Am 99:587–606

    PubMed  Google Scholar 

  • Gosden RG (1986) Biology of menopause : the causes and consequences of ovarian ageing. Q Rev Biol 61:275–279

    Google Scholar 

  • Gougeon A (1996) Regulation of ovarian follicular development in primates: facts and hypotheses. Endocr Rev 17:121–155

    CAS  PubMed  Google Scholar 

  • Gougeon A, Chainy GBN (1987) Morphometric studies of small follicles in ovaries of women at different ages. J Reprod Fertil 81:433–442

    CAS  PubMed  Google Scholar 

  • Gray CH, James VHT (1979) Hormones in blood, vol. 1 Academic, Press. ISBN London vol 1, 012296201X

    Google Scholar 

  • Harris WH (1960) A microscopic method of determining rates of bone growth. Nature 188:1038–1039

    CAS  PubMed  Google Scholar 

  • Hench LL, Wilson J (1984) Surface-active biomaterials. Science 226:630–636

    CAS  PubMed  Google Scholar 

  • Hunt PA, Hassold TJ (2008) Human female meiosis: what makes a good egg go bad? Trends Genet 24:86–93

    CAS  PubMed  Google Scholar 

  • Jackson AP, Vincent JFV, Turner RM (1988) The mechanical design of nacre. Proc R Soc Lond 234:415–440

    Google Scholar 

  • Jansen RP (1993) Relative infertility: modeling clinical paradoxes. Fertil Steril 59:1041–1045

    CAS  PubMed  Google Scholar 

  • John Spencer E (2012) Aragonite-associated biomineralization proteins are disordered and contain interactive motifs. Bioinformatics 28:3182–3185

    Google Scholar 

  • Kartsogiannis V, Ng KW (2004) Cell lines and primary cell cultures in the study of bone cell biology. Mol Cell Endocrinol 228:79–102

    CAS  PubMed  Google Scholar 

  • Kim JH, Jin HM, Kim K, Song I, Youn BU, Matsuo K, Kim N (2009) The mechanism of osteoclast differentiation induced by IL-1. J Immunol 183:1862–1870

    CAS  PubMed  Google Scholar 

  • Kim H, Lee K, Ko CY, Kim HS, Shin HI, Kim T, Lee SH, Jeong D (2012) The role of nacreous factors in preventing osteoporotic bone loss through both osteoblast activation and osteoclast inactivation. Biomaterials 33:7489–7496

    CAS  PubMed  Google Scholar 

  • Kremer M, Judd J, Rifkin B, Auszmann J, Oursler MJ (1995) Estrogen modulation of osteoclast lysosomal enzyme secretion. J Cell Biochem 57:271–279

    CAS  PubMed  Google Scholar 

  • Kuliev A, Cieslak J, Verlinsky Y (2005) Frequency and distribution of chromosome abnormalities in human oocytes. Cytogenet Genome Res 111:193–198

    CAS  PubMed  Google Scholar 

  • Lamghari M, Almeida MJ, Berland S, Huet H, Laurent A, Milet C, Lopez E (1999) Stimulation of bone marrow cells and bone formation by nacre: in vivo and in vitro studies. Bone 25:91S–94S

    CAS  PubMed  Google Scholar 

  • Lamghari M, Antonietti P, Berland S, Laurent A, Lopez E (2001a) Arthrodesis of lumbar spine transverse processes using nacre in rabbit. J Bone Miner Res 16:2232–2237

    CAS  PubMed  Google Scholar 

  • Lamghari M, Berland S, Laurent A, Huet H, Lopez E (2001b) Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 22:555–562

    CAS  PubMed  Google Scholar 

  • Li L, Wang P, Hu K, Wang X, Cai W, Ai C, Liu S, Wang Z (2017) PFMG1 promotes osteoblast differentiation and prevents osteoporotic bone loss. FASEB J

    Google Scholar 

  • Li L, Wang P, Hu K, Wang X, Cai W, Ai C, Liu S, Wang Z (2018) PFMG1 promotes osteoblast differentiation and prevents osteoporotic bone loss. FASEB journal: official publication of the Federation of American Societies for Experimental Biology 32:838–849

    CAS  Google Scholar 

  • Liao H, Mutvei H, Sjostrom M, Hammarstrom L, Li J (2000) Tissue responses to natural aragonite (Margaritifera shell) implants in vivo. Biomaterials 21:457–468

    CAS  PubMed  Google Scholar 

  • Lim SK, Won YJ, Lee JH, Kwon SH, Lee EJ, Kim KR, Lee HC, Huh KB, Chung BC (1997) Altered hydroxylation of estrogen in patients with postmenopausal osteopenia. J Clin Endocrinol Metab 82:1001–1006

    CAS  PubMed  Google Scholar 

  • Liu HL, Liu SF, Ge YJ, Liu J, Wang XY, Xie LP, Zhang RQ, Wang Z (2007) Identification and characterization of a biomineralization related gene PFMG1 highly expressed in the mantle of Pinctada fucata. Biochemistry 46:844–851

    CAS  PubMed  Google Scholar 

  • Lopez E, Vidal B, Berland S, Camprasse S, Camprasse G, Silve C (1992) Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667–679

    CAS  PubMed  Google Scholar 

  • Manolagas SC, Jilka RL (1995) Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med 332:305–311

    CAS  PubMed  Google Scholar 

  • Markstrom E, Svensson EC, Shao RJ, Svanberg B, Billig H (2002) Survival factors regulating ovarian apoptosis – dependence on follicle differentiation. Reproduction 123:23–30

    CAS  PubMed  Google Scholar 

  • Mcclung MR (2016) Primer on the metabolic bone diseases and disorders of mineral metabolism, eighth edition. Indian J Med Res 144:489–490

    Google Scholar 

  • Mendelsohn ME, Zhu Y, O’Neill S (1991) The 29-kDa proteins phosphorylated in thrombin-activated human platelets are forms of the estrogen receptor-related 27-kDa heat shock protein. Proc Natl Acad Sci U S A 88:11212–11216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Merz WA, Schenk RK (1970) A quantitative histological study on bone formation in human cancellous bone. Acta Anat (Basel) 76:1–15

    CAS  Google Scholar 

  • Michnovicz JJ, Rosenberg DW (1992) Oxidative metabolism of estrogens in rat intestinal mitochondria. Biochem Pharmacol 43:1847–1852

    CAS  PubMed  Google Scholar 

  • Miller SC, Bowman BM, Smith JM, Jee WS (1980) Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles. Anat Rec 198:163

    CAS  PubMed  Google Scholar 

  • Mouries LP, Almeida MJ, Milet C, Berland S, Lopez E (2002) Bioactivity of nacre water-soluble organic matrix from the bivalve mollusk Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 132:217–229

    PubMed  Google Scholar 

  • Niwa T, Bradlow HL, Fishman J, Swaneck GE (1990) Induction and inhibition of estradiol hydroxylase activities in MCF-7 human breast cancer cells in culture. Steroids 55:297–302

    CAS  PubMed  Google Scholar 

  • Noble BS, Stevens H, Loveridge N, Reeve J (1997) Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone 20:273–282

    CAS  PubMed  Google Scholar 

  • Okazaki R, Inoue D, Shibata M, Saika M, Kido S, Ooka H, Tomiyama H, Sakamoto Y, Matsumoto T (2002) Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology 143:2349–2356

    CAS  PubMed  Google Scholar 

  • Page P (2010) Osteoporosis handout on health. https://www.bones.nih.gov/health-info/bone/osteoporosis/osteoporosis-hoh. NIH Publication No. 16-5158

  • Pellestor F, Anahory T, Hamamah S (2005) Effect of maternal age on the frequency of cytogenetic abnormalities in human oocytes. Cytogenet Genome Res 111:206–212

    CAS  PubMed  Google Scholar 

  • Prior JC (1998) Perimenopause: the complex endocrinology of the menopausal transition. Endocr Rev 19:397–428

    CAS  PubMed  Google Scholar 

  • Recker RR (1983) Bone histomorphometry: techniques and interpretation. 1

    Google Scholar 

  • Richardson SJ, Senikas V, Nelson JF (1987) Follicular depletion during the menopausal transition: evidence for accelerated loss and ultimate exhaustion. J Clin Endocrinol Metab 65:1231–1237

    CAS  PubMed  Google Scholar 

  • Riggs BL, Jowsey J, Kelly PJ, Jones JD, Maher FT (1969) Effect of sex hormones on bone in primary osteoporosis. J Clin Investig 48:1065

    CAS  PubMed  Google Scholar 

  • Rousseau M, Pereira-Mouries L, Almeida MJ, Milet C, Lopez E (2003) The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblasts. Comp Biochem Physiol B Biochem Mol Biol 135:1–7

    PubMed  Google Scholar 

  • Rousseau M, Boulzaguet H, Biagianti J, Duplat D, Milet C, Lopez E, Bedouet L (2008) Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1 cells. J Biomed Mater Res A 85:487–497

    PubMed  Google Scholar 

  • Samali A, Cotter TG (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223:163–170

    CAS  PubMed  Google Scholar 

  • Sherwin BB (2003) Estrogen and cognitive functioning in women. Endocr Rev 24:133–151

    CAS  PubMed  Google Scholar 

  • Stucky GD (1999) Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399:761–763

    Google Scholar 

  • te Velde ER, Pearson PL (2002) The variability of female reproductive ageing. Hum Reprod Update 8:141–154

    Google Scholar 

  • Tomkinson A, Reeve J, Shaw RW, Noble BS (1997) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82:3128–3135

    CAS  PubMed  Google Scholar 

  • Tracy BM, Doremus RH (1984) Direct electron microscopy studies of the bone-hydroxylapatite interface. J Biomed Mater Res 18:719–726

    CAS  PubMed  Google Scholar 

  • Treloar AE (1981) Menstrual cyclicity and the pre-menopause. Maturitas 3:249–264

    CAS  PubMed  Google Scholar 

  • Tsuchiya Y, Nakajima M, Yokoi T (2005) Cytochrome P450-mediated metabolism of estrogens and its regulation in human. Cancer Lett 227:115–124

    CAS  PubMed  Google Scholar 

  • Udagawa N, Takahashi N, Jimi E, Matsuzaki K, Tsurukai T, Itoh K, Nakagawa N, Yasuda H, Goto M, Tsuda E (1999) Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 25:517

    CAS  PubMed  Google Scholar 

  • Vedi S, Compston JE (1996) The effects of long-term hormone replacement therapy on bone remodeling in postmenopausal women. Bone 19:535–539

    CAS  PubMed  Google Scholar 

  • Wahab M, Ballard P, Purdie DW, Cooper A, Willson JC (1997) The effect of long term oestradiol implantation on bone mineral density in postmenopausal women who have undergone hysterectomy and bilateral oophorectomy. Br J Obstet Gynaecol 104:728–731

    CAS  PubMed  Google Scholar 

  • Waters KM, Rickard DJ, Riggs BL, Khosla S, Katzenellenbogen JA, Katzenellenbogen BS, Moore J, Spelsberg TC (2001) Estrogen regulation of human osteoblast function is determined by the stage of differentiation and the estrogen receptor isoform. J Cell Biochem 83:448–462

    CAS  PubMed  Google Scholar 

  • Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392:861–862

    CAS  PubMed  Google Scholar 

  • Westerlind KC, Gibson KJ, Malone P, Evans GL, Turner RT (1998) Differential effects of estrogen metabolites on bone and reproductive tissues of ovariectomized rats. J Bone Miner Res 13:1023–1031

    CAS  PubMed  Google Scholar 

  • Xu H, Huang K, Gao Q, Gao Z, Han X (2001) A study on the prevention and treatment of myopia with nacre on chicks. Pharmacol Res 44:1–6

    CAS  PubMed  Google Scholar 

  • Zhang JX, Li SR, Yao S, Bi QR, Hou JJ, Cai LY, Han SM, Wu WY, Guo DA (2016) Anticonvulsant and sedative-hypnotic activity screening of pearl and nacre (mother of pearl). J Ethnopharmacol 181:229–235

    CAS  PubMed  Google Scholar 

  • Zhiyong T, Kotov NA, Sergei M, Birol O (2003) Nanostructured artificial nacre. Nat Mater 2:413–418

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the National Key R&D Program of China (2018YFD0400204), the Key International S&T Cooperation Program of China (2016YFE113700), the European Union’s Horizon 2020 Research and Innovation Program (633589) and the National Natural Science Foundation of China (81471396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, L., Wang, Z. (2018). Ovarian Aging and Osteoporosis. In: Wang, Z. (eds) Aging and Aging-Related Diseases. Advances in Experimental Medicine and Biology, vol 1086. Springer, Singapore. https://doi.org/10.1007/978-981-13-1117-8_13

Download citation

Publish with us

Policies and ethics