Statistical Modeling and Target Detection of PolSAR Images



The interpretation of the polarimetric synthetic radar (PolSAR) image, which can be fully represented by the polarimetric covariance matrix, is of considerable current interest. To interpret the PolSAR image effectively, many researches on image processing like denoising, segmentation, classification and edge detection algorithms are carried out.


  1. 1.
    A. Lopès, F. Séry, Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution. IEEE Trans. Geosci. Remote Sens. 35(3), 632–647 (1997)CrossRefGoogle Scholar
  2. 2.
    J.S. Lee, M.R. Grunes, G.D. Grandi, Polarimetric SAR speckle filtering and its implication for classification. IEEE Trans. Geosci. Remote Sens. 37(5), 2363–2373 (1999)CrossRefGoogle Scholar
  3. 3.
    J.M. Beaulieu, R. Touzi, Segmentation of textured polarimetric SAR scenes by likelihood approximation. IEEE Trans. Geosci. Remote Sens. 42(10), 2063–2072 (2004)CrossRefGoogle Scholar
  4. 4.
    J.S. Lee, M.R. Grunes, T.L. Ainsworth, L.J. Du, D.L. Schuler, S.R. Cloude, Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. Geosci. Remote Sens. 37(5), 2249–2258 (1999)CrossRefGoogle Scholar
  5. 5.
    J. Schou, H. Skriver, A.A. Nielsen, K. Conradsen, CFAR edge detector for polarimetric SAR images. IEEE Trans. Geosci. Remote Sens. 41(1), 20–32 (2003)CrossRefGoogle Scholar
  6. 6.
    N.R. Goodman, Statistical analysis based on a certain multivariate complex gaussian distribution (an introduction). Ann. Math. Stat. 34(152), 152–180 (1963)MathSciNetCrossRefGoogle Scholar
  7. 7.
    S.H. Yueh, J.A. Kong, J.K. Jao, R.T. Shin, L.M. Novak, K-distribution and polarimetric terrain radar clutter. J. Electromagn. Waves Appl. 3(8), 747–768 (1989)CrossRefGoogle Scholar
  8. 8.
    L.M. Novak, M.B. Sechtin, M.J. Cardullo, Studies of target detection algorithms that use polarimetric radar data. IEEE Trans. Aerosp. Electron. Syst. AES-25, 150–165 (1989)CrossRefGoogle Scholar
  9. 9.
    J.S. Lee, K.W. Hoppel, S.A. Mango, A.R. Miller, Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 32(5), 1017–1028 (1994)CrossRefGoogle Scholar
  10. 10.
    J.S. Lee, D.L. Schuler, R.H. Lang, K.J. Ranson, K-distribution for multi-look processed polarimetric SAR imagery, in Proceedings of the IEEE IGARSS, Pasadena, CA, vol. 4 (1994), pp. 2179–2181Google Scholar
  11. 11.
    C.C. Freitas, A.C. Frery, A.H. Correia, The polarimetric G distribution for SAR data analysis. Environmetrics 16(1), 13–31 (2005)MathSciNetCrossRefGoogle Scholar
  12. 12.
    L. Bombrun, J.M. Beaulieu, Fisher distribution for texture modeling of polarimetric SAR data. IEEE Geosci. Remote Sens. Lett. 5(3), 512–516 (2008)CrossRefGoogle Scholar
  13. 13.
    A.C. Frery, H.J. Muller, C.C.F. Yanasse, S.J.S. Sant’Anna, A model for extremely heterogeneous clutter. IEEE Trans. Geosci. Remote Sens. 35(3), 648–659 (1997)CrossRefGoogle Scholar
  14. 14.
    L. Bombrun, G. Vasile, M. Gay, F. Totir, Hierarchical segmentation of polarimetric SAR images using heterogeneous clutter models. IEEE Trans. Geosci. Remote Sens. 49(2), 726–737 (2011)CrossRefGoogle Scholar
  15. 15.
    H.C. Li, W. Hong, Y.R. Wu, P.Z. Fan, On the empirical-statistical modeling of SAR images with generalized gamma distribution. IEEE J. Sel. Top. Signal Process. 5(3), 386–397 (2011)CrossRefGoogle Scholar
  16. 16.
    H.C. Li, W. Hong, Y.R. Wu, Generalized gamma distribution with MoLC estimation for statistical modeling of SAR images, in Proceedings of the APSAR, (2007) pp. 525–528Google Scholar
  17. 17.
    J. M. Nicolas, Stian Normann Anfinsen (translator), Introduction to second kind statistic: application of log-moments and log-cumulants to SAR image law analysis. Trait. Signal 19(3), 139–167 (2002)Google Scholar
  18. 18.
    C. Tison, J.M. Nicolas, F. Tupin, H. Maitre, A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2046–2057 (2004)CrossRefGoogle Scholar
  19. 19.
    V.A. Krylov, G. Moser, S.B. Serpico, J. Zerubia, On the method of logarithmic cumulants for parametric probability density function estimation. INRIA, Res. Rep. 7666, 1–36 (2011)zbMATHGoogle Scholar
  20. 20.
    G. Moser, J. Zerubia, S.B. Serpico, SAR amplitude probability density function estimation based on a generalized Gaussian model. IEEE Trans. Image Process. 15(6), 1429–1442 (2006)CrossRefGoogle Scholar
  21. 21.
    H.C. Li, W. Hong, Y.R. Wu, P.Z. Fan, An efficient and flexible statistical model based on generalized gamma distribution for amplitude SAR images. IEEE Trans. Geosci. Remote Sens. 48(6), 2711–2722 (2010)CrossRefGoogle Scholar
  22. 22.
    S.N. Anfinsen, Statistical analysis of multilook polarimetric radar images with the Mellin transform, Ph.D. dissertation, Univ. Tromsø, Tromsø, Norway, 2010Google Scholar
  23. 23.
    S.N. Anfinsen, T. Eltoft, Application of the matrix-variate Mellin transform to analysis of polarimetric radar images. IEEE Trans. Geosci. Remote Sens. 49(6), 2281–2295 (2011)CrossRefGoogle Scholar
  24. 24.
    A.C. Frery, A.H. Correia, C.C. Freitas, Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information. IEEE Trans. Geosci. Remote Sens. 45(10), 3098–3109 (2007)CrossRefGoogle Scholar
  25. 25.
    A.M. Mathai, Distribution of the canonical correlation matrix. Ann. Inst. Stat. Math. 33(pt. A), 35–43 (1981)MathSciNetCrossRefGoogle Scholar
  26. 26.
    C.H. Gierull, I.C. Sikaneta, Estimating the effective number of looks in interferometric SAR data. IEEE Trans. Geosci. Remote Sens. 47(11), 1733–1742 (2002)CrossRefGoogle Scholar
  27. 27.
    S.N. Anfinsen, A.P. Doulgeris, T. Eltoft, Estimation of the equivalent number of looks in polarimetric synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 47(11), 3795–3809 (2009)CrossRefGoogle Scholar
  28. 28.
    N. Batir, On some properties of digamma and polygamma functions. J. Math. Anal. Appl. 328(1), 452–465 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    D.J. Crisp, The state-of-the-art in ship detection in synthetic aperture radar imagery. DSTO, Dept. Defence, Australian Government, Canberra, Australia, Public Release Document DSTO-RR-0272, 2004Google Scholar
  30. 30.
    C.J. Oliver, S. Quegan, Understanding Synthetic Aperture Radar Images (Artech House, Norwood, MA, 1998)Google Scholar
  31. 31.
    I.C. Sikaneta, Detection of ground moving objects with synthetic aperture radar. Ph. D. thesis. University of Ottawa, 2002Google Scholar
  32. 32.
    F.T. Ulaby, C. Elachi, Radar Polarimetric for Geoscience Application (Artech House, Boston, 1990)Google Scholar
  33. 33.
    C. Livingstone, A. Thompson, The moving object detection experiment on RADARSAT-2. Can. J. Remote. Sens. 30(3), 355–368 (2004)CrossRefGoogle Scholar
  34. 34.
    V.A. Krylov, G. Moser, S.B. Serpico, J. Zerubia, Supervised high resolution dual polarization SAR image classification by finite mixtures and copulas. IEEE J. Sel. Top. Sign. Proces. (2012, In Press)Google Scholar
  35. 35.
    R.D. Chaney, M.C. Bud, L.M. Novak, On the performance of polarimetric target detection algorithms. IEEE AES Magazine 10–15 (1990)Google Scholar
  36. 36.
    Gierull, Statistics of SAR interferograms with application to moving target detection. DREO Technical Report TR 2001-045, Defense Research Establishment Ottawa, Department of National Defense, Ottawa, Canada, 2001Google Scholar
  37. 37.
    A.C. Frery, J. Jacobo-Berlles, J. Gambini, M. Mejail, Polarimetric SAR image segmentation with B-Splines and a new statistical model. Multidimension. Syst. Signal Process. 21, 319–342 (2010)CrossRefGoogle Scholar
  38. 38.
    J.M. Nicolas, Introduction to second kind statistic: application of log-moments and log-cumulants to SAR image law analysis. Trait. Signal 19(3), 139–167 (2002)zbMATHGoogle Scholar
  39. 39.
    S.I. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Academic Press, San Diego, CA, 2007)Google Scholar
  40. 40.
    I.N. Bronshtein, K.A. Semendyayev, G. Musiol, H. Muehlig, Handbook of Mathematics, 5th edn. (Springer, 2007)Google Scholar

Copyright information

© National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.National University of Defense TechnologyChangshaChina

Personalised recommendations