Skip to main content
  • 362 Accesses

Abstract

Statistical modeling of SAR images is one of the basic problems of SAR image interpretation. It involves several fields such as pattern recognition, image processing, signal analysis, probability theory, and electromagnetic scattering characteristics analysis of targets etc. [1]. Generally speaking, statistical modeling of SAR images falls into the category of computer modeling and simulation. At present, one of the major strategies of SAR image interpretation is to use the methods of classical statistical pattern recognition which are based on Bayesian Theory and can reach a theoretically optimal solution [1, 2]. To utilize these methods for SAR image interpretation, a proper statistical distribution must be adopted to model SAR image data [1, 2]. Therefore, in the past ten years, statistical modeling of SAR image has become an active research field [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.J. Oliver, Understanding Synthetic Aperture Radar Images (Artech House, Boston/London, 1998), Chaps. 4, 5

    Google Scholar 

  2. Q. Zhang, Research on Detection Methods of Vehicle Targets from SAR Images based on Statistical Model (in Chinese). Master’s Dissertation, National University of Defence Technology, China, 2005, Chap. 2

    Google Scholar 

  3. A. Achim, E.E. Kuruoglu, J. Zerubia, SAR image filtering based on the heavy-tailed Rayleigh model. IEE Trans. Image Process. 15(9), 2686–2693 (2006)

    Article  Google Scholar 

  4. A. Achim, P. Tsakalides, A. Bezerianos, SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling. IEEE Trans. Geosci. Remote Sens. 41(8), 1773–1784 (2003)

    Article  Google Scholar 

  5. M. Walessa, M. Datcu, Model-based despeckling and information extraction from SAR images. IEEE Trans. Geosci. Remote Sens. 38(9), 2258–2269 (2000)

    Article  Google Scholar 

  6. R. Touzi, A review of speckle filtering in the context of estimation theory. IEEE Trans. Geosci. Remote Sens. 40(11), 2392–2404 (2002)

    Article  Google Scholar 

  7. F. Zhang, Y.M. Yoo, L.M. Koh, Y.M. Kim, Nonlinear diffusion in Laplacian pyramid domain for ultrasonic speckle reduction. IEEE Trans. Med. Imaging 26(2), 200–211 (2007)

    Article  Google Scholar 

  8. J.S. Lee, Speckle analysis and smoothing of synthetic aperture radar images. Comput. Graph. Image Process. 17, 24–32 (1981)

    Article  Google Scholar 

  9. V.S. Frost, J.A. Stiles, K.S. Shanmugan, J.C. Holtzman, A model for radar images and its application to adaptive digital filtering for multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-4(2), 157–162 (1982)

    Article  Google Scholar 

  10. R. Touzi, A. Lopes, P. Bousquet, A statistical and geometrical edge detector for SAR images. IEEE Trans. Geosci. Remote Sensing 26, 764–773 (1988)

    Article  Google Scholar 

  11. P.T. Macri, C.J. Oliver, P. Lombardo, Segmentation-based joint classification of SAR and optical images. IEE Proc. Radar Sonar Navig. 149(6), 281–296 (2002)

    Article  Google Scholar 

  12. J. Lee, I. Jurkevich, Segmentation of SAR images. IEEE Trans. Geosci. Remote Sens. 27, 674–680 (1989)

    Article  Google Scholar 

  13. R. FjØrtØft, Y. Delignon, W. Pieczynski, M. Sigelle, F. Tupin, Unsupervised classification of radar images using hidden Markov chains and hidden random fields. IEEE Trans. Geosci. Remote Sens. 41, 675–686 (2003)

    Article  Google Scholar 

  14. Y. Koukoulas, F.T. Ulaby, L.E. Pierce, The Bayesian hierarchical classifier (BHC) and its application to short vegetation using multifrequency polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 42(2), 469–477 (2004)

    Article  Google Scholar 

  15. A.N. Nyonngui, E. Tonye, A. Akono, Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images. Int. J. Remote Sens. 23(9), 1895–1925 (2002)

    Article  Google Scholar 

  16. H. Deng, D.A. Clausi, Unsupervised segmentation of synthetic aperture radar sea ice imagery using a novel Markov random field model. IEEE Trans. Geosci. Remote Sens. 43(3), 528–538 (2005)

    Article  Google Scholar 

  17. C. Tison, J.M. Nicolas, F. Tupin, H. Maitre, A new statistical model for Markovian classification of urban areas in high-resolution SAR images. IEEE Trans. Geosci. Remote Sens. 42(10), 2046–2057 (2004)

    Article  Google Scholar 

  18. M.D. Bisceglie, C. Galdi, CFAR detection of extended objects in high-resolution SAR images. IEEE Trans. GRS. 43(4), 833–842 (2005)

    Google Scholar 

  19. D. Blacknell, Contextual information in SAR target detection. IEE Proc. Radar, Sonar and Navig. 148(1), 41–47 (2001)

    Article  Google Scholar 

  20. G. Gao, G. Kuang, Q. Zhang, D. Li, Fast detecting and locating groups of targets in high-resolution SAR images. Pattern Recogn. 40, 1378–1384 (2007)

    Article  MATH  Google Scholar 

  21. L.M. Novak et al., The automatic target-recognition system in SAIP. Lincoln Lab. J. 10(2), 187–202 (1997)

    Google Scholar 

  22. A. Farrouki, M. Barkat, Automatic censoring CFAR variability for nonhomogeneous environments. IEE Proc. Radar, Sonar and Navig. 152(1), 43–51 (2005)

    Article  Google Scholar 

  23. J.S. Salazar II, Detection Schemes for Synthetic Aperture Radar Imagery Based On a Beta Prime Statistical Model. Doctor’s dissertation, The New Mexico University, 1999, Chap. 5

    Google Scholar 

  24. R.A. English et al., Development of an ATR Workbench for SAR Imagery. Technical Report, DRDC, Ottawa, 2005

    Google Scholar 

  25. S. Cimmino, G. Franceschetti, A. Iodice, Efficient spotlight SAR raw signal simulation of extended scenes. IEEE Trans. Geosci. Remote Sens. 41(10), 478–489 (2003)

    Article  Google Scholar 

  26. H.H. Arsenault, G. April, Properties of speckle integrated with a finite aperture and logarithmically transformed. J. Opt. Soc. Am. 66(11), 1160–1163 (1976)

    Article  Google Scholar 

  27. K.D. Ward, Compound representation of high resolution sea clutter. Electron. Lett. 7, 561–565 (1981)

    Article  Google Scholar 

  28. A.C. Frery, H.J. Muller, C.C.F. Yanasse, S.J.S. Sant’Anna, A model for extremely heterogeneous clutter. IEEE Trans. GRS 35(3), 648–659 (1997)

    Article  Google Scholar 

  29. G. Moser et al., SAR amplitude probability density function estimation based on a generalized Gaussian scattering model. SPIE 5573, 307–318 (2004)

    Google Scholar 

  30. G. Moser, J. Zerubia, S.B. Serpico, SAR amplitude probability density function estimation based on a generalized Gaussian model. IEEE Trans. Image Process. 15(6), 1429–1442 (2006)

    Article  Google Scholar 

  31. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley, New York, 2001)

    MATH  Google Scholar 

  32. G. Moser, J. Zerubia, S.B. Serpico, Dictionary-based stochastic expectation–maximization for SAR amplitude probability density function estimation. IEEE Trans. Geosci. Remote Sens. 44(1) (2006)

    Article  Google Scholar 

  33. R.A. Rendner, H.F. Walker, Mixture densities, maximum likelihood, and the EM algorithm. SIAM REV 26(2), 195–239 (1984)

    Article  MathSciNet  Google Scholar 

  34. I.R. Joughin et al., Maximum likelihood estimation of K distribution parameters for SAR data. IEEE Trans. GRS 31(5), 989–999 (1993)

    Google Scholar 

  35. M.S. Greco, F. Gini, Statistical analysis of high-resolution SAR ground clutter data. IEEE Trans. Geosci. Remote Sens. 45(3), 566–575 (2007)

    Article  Google Scholar 

  36. M.D. DcVore, J.A. O’Sullivan, Statistical assessment of model fit for synthetic aperture radar data. SPIE 4382, 379–388 (2001)

    Google Scholar 

  37. V. Anastassopoulos, High resolution radar clutter statistics. IEEE Trans. AES 35(1), 43–59 (1999)

    Google Scholar 

  38. H. Akaike, Information theory and an extension of maximum likelihood principle, in 2nd International Symposium on Information Theory, ed. by B.N. Petrov, F. Csaki (Akademiai Kiado, Budapest, 1973), pp. 267–281

    Google Scholar 

  39. J.B. Billingsley, A. Farina, F. Gini, M.V. Greco, L. Verrazzani, Statistical analyses of measured radar ground clutter data. IEEE Trans. Aerospace Electronic Systems 35(3), 579–593 (1999)

    Article  Google Scholar 

  40. Y. Delignon, W. Pieczynski, Modelling non-Rayleigh speckle distribution in SAR images. IEEE Trans. GRS. 40(6), 1430–1435 (2002)

    Google Scholar 

  41. A.P. Blake et al., High resolution SAR clutter textural analysis and simulation. SPIE 2584, 101–108 (1995)

    Google Scholar 

  42. G. Gao et al., The multiplicative noise analysis of SAR images. Signal Process. (China) 11(3), 178–196 (2006). (in Chinese)

    Google Scholar 

  43. R.B. D’Agostino, E.S. Pearson, Tests for departure from normality. Empirical results for the distributions of b2 and \( \sqrt b_{1} \). Biometrika 60(3), 613–622 (1973)

    MathSciNet  MATH  Google Scholar 

  44. D. Blacknell et al., Estimators and distributions in single and multi-look polarimetric and interferometric data, in IGRASS’94 (IEEE,1994), pp. 8–12

    Google Scholar 

  45. E. Ertin, L.C. Potter, Polarimetric classification of scattering centers using M-ary Bayesian decision rules. IEEE Trans. AES 36(3), 738–749 (2000)

    Google Scholar 

  46. I.R. Joughin, D.P. Winebrenner, D.B. Percival, Probability density functions for multilook polarimetric signatures. IEEE Trans. Geosci. Remote Sens. 32(3), 562–574 (1994)

    Article  Google Scholar 

  47. J.S. Lee, K.W. Hoppel, S.A. Mango, A.R. Miller, Inensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 32(5), 1017–1028 (1994)

    Article  Google Scholar 

  48. Q. Jiang et al., Ship detection in RADARSAT SAR imagery using PNN-Model, in Proceedings of ADRO Symposium’98 (1998)

    Google Scholar 

  49. E. Parzen, On estimation of probability density function and mode. Signal Process. 33, 267–281 (1962)

    MathSciNet  MATH  Google Scholar 

  50. C.M. Bishop, Neural Networks for Pattern Recognition, 2nd edn. (Oxford University Press, Oxford, U.K., 1996)

    MATH  Google Scholar 

  51. J. Bruzzone, M. Marconcini, U. Wegmuller, A. Wiesmann, An advanced system for the automatic classification of multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 42(6), 1321–1334 (2004)

    Article  Google Scholar 

  52. P. Mantero et al., Partially supervised classification of remote sensing images using SVM-based probability density estimation. IEEE Trans. Geosci. Remote Sens. 43(3), 559–570 (2005)

    Article  Google Scholar 

  53. V.N. Vapnik, Statistical Learning Theory (Wiley, New York, 1998)

    Google Scholar 

  54. J. Weston, A. Gammerman, M. Stitson, V. Vapnik, V. Vovk, C. Watkins, Support vector density estimation, in Advances in kernel methods support vector learning, ed. by B. Scholkopf, C.J.C. Burges, A.J. Smola (MIT Press, Cambridge, MA, 1999), pp. 293–306

    Google Scholar 

  55. E.E. Kuruoglu, J. Zerubia, Modeling SAR images with a generalization of the Rayleigh distribution. IEEE Trans. Image Process. 13(4), 527–533 (2004)

    Article  Google Scholar 

  56. J.W. Goodman, Some fundamental properties of speckle. J. Opt. Soc. Amer. 66, 1145–1150 (1977)

    Article  Google Scholar 

  57. A. Papoulis, Probability, random variables, and stochastic processed, 3rd edn. (MeGraw Hill, New York, 1991)

    Google Scholar 

  58. L.M. Kaplan, Analysis of multiplicative speckle models for template-based SAR ATR. IEEE Trans. AES 37(4), 1424–1432 (2001)

    Google Scholar 

  59. C.L. Martinez et al., Polarimetric SAR speckle noise model. IEEE Trans. GRS 41(10), 2232–2242 (2003)

    Google Scholar 

  60. L.P. Fred, Texture and speckle in high resolution synthetic aperture radar clutter. IEEE Trans. GRS 31(1), 192–203 (1993)

    Google Scholar 

  61. H. Xie, L.E. Pierce, F.T. Ulaby, Statistical properties of logarithmically transformed speckle. IEEE Trans. GRS 40(3), 721–727 (2002)

    Google Scholar 

  62. M. Thr, K.C. Chin, J.W. Goodman, When is speckle noise multiplicative. Appl. Opt. 21, 1157–1159 (1982)

    Article  Google Scholar 

  63. J.W. Goodman, Statistical properties of laser speckle patterns, laser speckle and related phenomena (Springer Verlag, Heidelberg, Germany, 1975), pp. 9–75

    Google Scholar 

  64. E. Jakeman, P.N. Pusey, A model for non-Rayleigh sea echo. IEEE Trans. Antennas Propagat. AP-24(6), 806–814 (1976)

    Article  Google Scholar 

  65. C.J. Oliver, Correlated K-distribution scattering model. Opt. Acta 32, 1515–1547 (1985)

    Article  Google Scholar 

  66. S.H. Yueh, J.A. Kong, K distribution and polarimetric terrain radar clutter. J. Electromagn. Waves Applicat. 3(8), 747–768 (1989)

    Article  Google Scholar 

  67. Y. Delignon, R. Garello, A. Hillion, Statistical modeling of ocean SAR images. Proc. IEE Radar Sonar Navig. 144, 348–354 (1997)

    Article  Google Scholar 

  68. R.S. Raghavan, A method for estimating parameters of K-distributed clutter. IEEE Trans. AES 27(2), 238–246 (1991)

    Google Scholar 

  69. D. Blacknell, Comparison of parameter estimators for K-distribution. IEE Proc.-Radar Sonar Navig. 141(1), 45–52 (1994)

    Article  Google Scholar 

  70. C.J. Oliver, A model for non-Rayleigh scattering statistics. Opt. Acta 31(6), 701–722 (1984)

    Article  Google Scholar 

  71. T. Eltoft, K.A. Hogda, Non-Gaussian signal statistics in ocean SAR imagery. IEEE Trans. Geosci. Remote Sens. 36(2), 562–575 (1998)

    Article  Google Scholar 

  72. J. Jao. Amplitude distribution of composite terrain radar clutter and the K distribution. IEEE Trans. Antennas Propagat. AP-32(10), 1049–1052 (1984)

    Google Scholar 

  73. J.S. Lee et al., Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery. IEEE Trans. Geosci. Remote Sens. 32(6), 1017–1027 (1994)

    Google Scholar 

  74. R. Barakat, Direct derivation of intensity and phase statistics of speckle produced by a weak scatterer from the random sinusoid model. J. Opt. Soc. Amer. 71(1), 86–90 (1981)

    Article  Google Scholar 

  75. Y. Delignon, A. Marzouki, W. Pieczynski, Estimation of generalized mixtures and its application to image segmentation. IEEE Trans. Image Process. 6(10), 1364–1375 (2001)

    Article  Google Scholar 

  76. A.C. Frery et al., Alternative distributions for the multiplicative model in SAR images, in International Geoscience Remote Sensing Symposium, vol. 1, Florence, Italy (1995), pp. 169–171

    Google Scholar 

  77. H.J. Muller, Modeling of extremely heterogeneous radar backscatter, in IGARSS ‘97, vol. 4 (1997), 1603–1605

    Google Scholar 

  78. H.J. Muller, R. Pac, G-statistics for scaled SAR data, in Proceedings IEEE Geoscience and Remote Sensing Symposium, vol. 2 (1999), pp. 1297–1299

    Google Scholar 

  79. J.S. Salazar II et al., Statistical modeling of target and clutter in single-look non-polorimetric SAR imagery, in International Conference Signal and Image Processing, Las Vegas, USA (1998)

    Google Scholar 

  80. B. Jorgensen, Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics, 9 (Springer-Verlag, New York, 1982)

    Book  MATH  Google Scholar 

  81. T. Eltoft, Modeling the amplitude statistics of ultrasonic images. IEEE Trans. Med. Imaging 25(2), 229–240 (2006)

    Article  Google Scholar 

  82. T. Eltoft, The Rician inverse Gaussian distribution: a new model for non-Rayleigh signal amplitude statistics. IEEE Trans. Image Processing 14(11), 1722–1735 (2005)

    Article  MathSciNet  Google Scholar 

  83. T. Eltoft, A new model for the amplitude statistics of SAR imagery, in Proceedings of IGARSS, vol. III, July 2003, pp. 1993–1995

    Google Scholar 

  84. V. Anastassopoulos et al., A generalized compound model for radar clutter, in IEEE 1994 National Radar Conference, Atlanta, 1994, pp. 41–45

    Google Scholar 

  85. V. Anastassopoulos et al., A new clutter model for SAR images, in International Conference on Applications of Photonic Technology, ICAPT ’94, Toronto, 1994, pp. 21–23

    Google Scholar 

  86. V. Anastassopoulos et al., High resolution radar clutter classification, in IEEE International Radar Conference, Washington, DC, 1995, pp. 8–11

    Google Scholar 

  87. C.J. Nikias et al., Signal Processing with Alpha-Stable Distributions and Applications (Wiley, New York, 1995)

    Google Scholar 

  88. R.D. Pierce, RCS characterization using the alpha-stable distribution, in IEEE 1996 National Radar Conference (1996), pp. 394–419

    Google Scholar 

  89. R. Kappor et al., UWB radar detection of targets in foliage using alpha-stable clutter models. IEEE Trans. AES 35(3), 819–833 (1999)

    Google Scholar 

  90. E.E. Kuruoglu, Density parameter estimation of skewed alpha-stable distributions. IEEE Trans. Signal Process. 49(10), 2192–2201 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  91. E.E. Kuruoglu, J. Zerubia, Skewed α-stable distributions for modeling textures. Pattern Recognit. Lett. 24, 339–348 (2003)

    Article  Google Scholar 

  92. A. Banerjee, P. Burlina, R. Chellappa, Adaptive target detection in foliage-penetrating SAR images using alpha-stable models. IEEE Trans. Image Process. 8(12), 1823–1831 (1999)

    Article  Google Scholar 

  93. E.E. Kuruoglu et al., Modeling SAR images with a generalization of the Rayleigh distribution, in The 23th Annual Asilomar Conference on Signals, Systems and Computers, vol. 1 (2000), pp. 224–228

    Google Scholar 

  94. E.E. Kuruoglu et al., Approximation of alpha-stable probability densities using finite mixtures of Gaussian, in EUSIPCO’98 European Signal Processing Conference, Rhodes, Greece (1998), pp. 989–992

    Google Scholar 

  95. E. Conte, M. Longo, Characterization of radar clutter as a spherically invariant random process, in IEE Proceedings F-Communications, Radar and Signal Processing, vol. 134 (Apr. 1987), pp. 191–197

    Article  Google Scholar 

  96. S.F. George, The Detection of Nonfluctuating Targets in Log-Normal Clutter, NRL Report 6796 (1968)

    Google Scholar 

  97. S. Kuttikkad, R. Chellappa, Non-Gaussian CFAR techniques for target detection in high resolution SAR images, in Proceedings of ICIP-94 (1994), pp. 910–914

    Google Scholar 

  98. K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd edn. (Academic, Orlando, FL, 1990)

    MATH  Google Scholar 

  99. F.T. Ulaby et al., Textural information in SAR images. IEEE Trans. GRS 24, 235–245 (1986)

    Google Scholar 

  100. R. Dana, D. Knepp, The impact of strong scintillation on space based radar design II: noncoherent detection. IEEE Trans. Aerosp. Electron. Syst. AES-22(1), 34–36 (1986)

    Article  Google Scholar 

  101. M.D. DeVore et al., ATR performance of a Rician model for SAR images. SPIE (2000), p. 4050

    Google Scholar 

  102. A.P. Blake et al., High resolution SAR clutter textural analysis. IEE Colloquium on Recent Developments in Radar and Sonar Imaging Systems: What Next? 1995, UK, 10/1–10/9

    Google Scholar 

  103. D. Borghys, Interpretation and Registration of High-Resolution Polarimetric SAR Images. ENSTE 031, Paris, 2001

    Google Scholar 

  104. D. Blacknell, A mixture distribution model for correlated SAR clutter. SPIE 2958, 38–49 (1996)

    Google Scholar 

  105. D. Blacknell, Target detection in correlated SAR clutter. IEE Proc-RSN 147(1), 9–16 (2000)

    Google Scholar 

  106. D.A. Shnidman, Generalized radar clutter model. IEEE Trans. AES 35(3), 857–865 (1999)

    Google Scholar 

  107. L.P. Fred, Texture and speckle in high resolution synthetic aperture radar clutter. IEEE Trans. Remote Sens. 31(1), 192–203 (1993)

    Article  Google Scholar 

  108. A. Lopes et al., Statistical distribution and texture in multilook and complex SAR images, in International Geoscience and Remote Sensing Symposium, vol. 3, Washington, DC, 1990, pp. 2427–2430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui Gao .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, G. (2019). Overview for Statistical Modeling of SAR Images. In: Characterization of SAR Clutter and Its Applications to Land and Ocean Observations. Springer, Singapore. https://doi.org/10.1007/978-981-13-1020-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1020-1_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1019-5

  • Online ISBN: 978-981-13-1020-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics