Skip to main content

Methodological Approaches for the Characterization of the Self-assembling Behaviour in the Pharmaceutical Field

  • Chapter
  • First Online:
Book cover Thermodynamics and Biophysics of Biomedical Nanosystems

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 788 Accesses

Abstract

Self-assembling is a thermodynamic process in which single components aggregate into large ordered structure as a function of temperature and concentration. Self-assembling has been longer exploited in the pharmaceutical field for the development of colloidal delivery systems for therapeutic, theranostic or preventive medicine purposes. In fact, the design of new polymeric or lipid self-assembling systems represents an advance in material science and nanomedicine, giving rise to a plenty of drug or functional substance carriers as polymeric or surfactants micelles, liposomes, vesicles and biomembranes. Recently, the growing interest in bioresponsive nanomaterials, able to respond to different stimuli in vivo (pH or temperature), has greatly influenced the architecture of these self-assembling systems, leading to the formulation of functionalized, coated, layered or multi-walled colloidal particles. This improvement has definitely made not effortless the chemical-physical characterization of the self-assembling process in the pharmaceutical field. The present chapter is aimed to review the common available techniques employed to characterize the self-assembling behaviour of drug delivery systems in a temperature or concentration dependent manner. A particular focus will be placed on the calorimetric techniques (as differential scanning calorimetry, DSC or isothermal titration calorimetry, ITC), but also on alternative methodologies as high-resolution ultrasonic spectroscopy (HR-US).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grzybowski, B.A., Whitesides, G.M.: Dynamic aggregation of chiral spinners. Science 296, 718–721 (2002). https://doi.org/10.1126/science.1068130

    Article  Google Scholar 

  2. Grzybowski, B.A., Fitzner, K., Paczesny, J., Granick, S.: From dynamic self-assembly to networked chemical systems. Chem. Soc. Rev. 46, 5647–5678 (2017). https://doi.org/10.1039/C7CS00089H

    Article  Google Scholar 

  3. Peck, M., Dusserre, N., McAllister, T.N., L’Heureux, N.: Tissue engineering by self-assembly. Mater. Today 14, 218–224 (2011). https://doi.org/10.1016/S1369-7021(11)70117-1

    Article  Google Scholar 

  4. Verma, G., Hassan, P.A.: Self assembled materials: design strategies and drug delivery perspectives. Phys. Chem. Chem. Phys. 15, 17016 (2013). https://doi.org/10.1039/c3cp51207j

    Article  Google Scholar 

  5. Busseron, E., Ruff, Y., Moulin, E., Giuseppone, N.: Supramolecular self-assemblies as functional nanomaterials. Nanoscale 5, 7098 (2013). https://doi.org/10.1039/c3nr02176a

    Article  Google Scholar 

  6. Cheetham, A.G., Chakroun, R.W., Ma, W., Cui, H.: Self-assembling prodrugs. Chem. Soc. Rev. 46, 6638–6663 (2017). https://doi.org/10.1039/C7CS00521K

    Article  Google Scholar 

  7. Depero, L.E., Lucia Curri, M.: Inorganic self-assembly. Curr. Opin. Solid State Mater. Sci. 8, 103–109 (2004). https://doi.org/10.1016/J.COSSMS.2004.01.006

    Article  Google Scholar 

  8. Cong, H.-P., Yu, S.-H.: Self-assembly of functionalized inorganic–organic hybrids. Curr. Opin. Colloid Interface Sci. 14, 71–80 (2009). https://doi.org/10.1016/j.cocis.2008.09.003

    Article  Google Scholar 

  9. Bonacucina, G., Perinelli, D.R., Cespi, M., Casettari, L., Cossi, R., Blasi, P., Palmieri, G.F.: Acoustic spectroscopy: a powerful analytical method for the pharmaceutical field? Int. J. Pharm. 503, 174–195 (2016). https://doi.org/10.1016/j.ijpharm.2016.03.009

    Article  Google Scholar 

  10. Breazeale, M.A., McPherson, M.: Physical acoustics. In: Handbook of Acoustics. Springer, New York (2007)

    Google Scholar 

  11. Priev, A., Zalipsky, S., Cohen, R., Barenholz, Y.: Determination of critical micelle concentration of lipopolymers and other amphiphiles: comparison of sound velocity and fluorescent measurements. Langmuir 18, 612–617 (2002). https://doi.org/10.1021/LA0110085

    Article  Google Scholar 

  12. Savaroglu, G., Genc, L.: Determination of micelle formation of ketorolac tromethamine in aqueous media by acoustic measurements. Thermochim. Acta 552, 5–9 (2013). https://doi.org/10.1016/J.TCA.2012.11.008

    Article  Google Scholar 

  13. Savaroglu, G., Yurt, A.: Determination of the second critical micelle concentration of benzyldimethyltridecylazanium chloride in aqueous solution by acoustic and conductometric measurements. J. Chem. Thermodyn. 43, 1552–1556 (2011). https://doi.org/10.1016/J.JCT.2011.05.011

    Article  Google Scholar 

  14. Bhattacharjee, J.K., Kaatze, U.: Fluctuations near the critical micelle concentration. II. Ultrasonic attenuation spectra and scaling. J. Phys. Chem. B 117, 3798–3805 (2013). https://doi.org/10.1021/jp401120x

    Article  Google Scholar 

  15. Bhattacharjee, J.K., Kaatze, U.: Fluctuations near the critical micelle concentration I Premicellar aggregation, relaxation rate, and isentropic compressibility. J. Phys. Chem. B 117, 3790–3797 (2013). https://doi.org/10.1021/jp4011185

    Article  Google Scholar 

  16. Cespi, M., Bonacucina, G., Mencarelli, G., Pucciarelli, S., Giorgioni, G., Palmieri, G.F.: Monitoring the aggregation behaviour of self-assembling polymers through high-resolution ultrasonic spectroscopy. Int. J. Pharm. 388, 274–279 (2010). https://doi.org/10.1016/j.ijpharm.2009.12.053

    Article  Google Scholar 

  17. Farrugia, M., Morgan, S.P., Alexander, C., Mather, M.L.: Ultrasonic monitoring of drug loaded Pluronic F127 micellular hydrogel phase behaviour. Mater. Sci. Eng. C 34, 280–286 (2014). https://doi.org/10.1016/J.MSEC.2013.09.018

    Article  Google Scholar 

  18. Perinelli, D.R., Cespi, M., Pucciarelli, S., Casettari, L., Palmieri, G.F., Bonacucina, G.: Effect of phosphate buffer on the micellisation process of Poloxamer 407: microcalorimetry, acoustic spectroscopy and dynamic light scattering (DLS) studies. Colloids Surf. A Physicochem. Eng. Aspects 436, 123–129 (2013). https://doi.org/10.1016/j.colsurfa.2013.06.002

    Article  Google Scholar 

  19. Inoue, T., Norisuye, T., Sugita, K., Nakanishi, H., Tran-Cong-Miyata, Q.: Size distribution and elastic properties of thermo-responsive polymer gel microparticles in suspension probed by ultrasonic spectroscopy. Ultrasonics 82, 31–38 (2018). https://doi.org/10.1016/J.ULTRAS.2017.07.007

    Article  Google Scholar 

  20. Taylor, T.M., Davidson, P.M., Bruce, B.D., Weiss, J.: Ultrasonic spectroscopy and differential scanning calorimetry of liposomal-encapsulated nisin. J. Agric. Food Chem. 53, 8722–8728 (2005). https://doi.org/10.1021/jf050726k

    Article  Google Scholar 

  21. Perinelli, D.R., Cespi, M., Bonacucina, G., Rendina, F., Palmieri, G.F.: Heating treatments affect the thermal behaviour of doxorubicin loaded in PEGylated liposomes. Int. J. Pharm. 534, 81–88 (2017). https://doi.org/10.1016/J.IJPHARM.2017.09.069

    Article  Google Scholar 

  22. Dominguez, A., Fernandez, A., Gonzalez, N., Iglesias, E., Montenegro, L.: Determination of critical micelle concentration of some surfactants by three techniques. J. Chem. Educ. 74, 1227 (1997). https://doi.org/10.1021/ed074p1227

    Article  Google Scholar 

  23. Aguiar, J., Carpena, P., Molina-Bolı́var, J.A., Carnero Ruiz, C.: On the determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 258, 116–122 (2003). https://doi.org/10.1016/s0021-9797(02)00082-6

    Article  Google Scholar 

  24. Patist, A., Bhagwat, S.S., Penfield, K.W., Aikens, P., Shah, D.O.: On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J. Surf. Deterg. 3, 53–58 (2000). https://doi.org/10.1007/s11743-000-0113-4

    Article  Google Scholar 

  25. Bonacucina, G., Misici-Falzi, M., Cespi, M., Palmieri, G.F.: Characterization of micellar systems by the use of acoustic spectroscopy. J. Pharm. Sci. 97, 2217–2227 (2008). https://doi.org/10.1002/jps.21156

    Article  Google Scholar 

  26. Schick, C., Lexa, D., Leibowitz, L., Schick, C., Lexa, D., Leibowitz, L.: Differential scanning calorimetry and differential thermal analysis. In: Characterization of Materials. Wiley, Hoboken, NJ, USA (2012). ISBN 9780471266969

    Google Scholar 

  27. del Río, J.M., Grolier, J.-P.E.: Chapter 4. Isothermal titration calorimetry. In: Enthalpy and Internal Energy, pp. 96–132. Royal Society of Chemistry, Cambridge (2017)

    Google Scholar 

  28. Bouchal, R., Hamel, A., Hesemann, P., In, M., Prelot, B., Zajac, J.: Micellization behavior of long-chain substituted alkyl guanidinium surfactants. Int. J. Mol. Sci. 17, 223 (2016). https://doi.org/10.3390/ijms17020223

    Article  Google Scholar 

  29. Lu, H., Pezron, I., Gaudin, T., Drelich, A.: Non-equilibrium micelles formed by sugar-based surfactants under their Krafft temperature. Colloids Surf. A Physicochem. Eng. Aspects 540, 167–176 (2018). https://doi.org/10.1016/J.COLSURFA.2017.12.053

    Article  Google Scholar 

  30. Wei, X., Cohen, R., Barenholz, Y.: Insights into composition/structure/function relationships of Doxil® gained from “high-sensitivity” differential scanning calorimetry. Eur. J. Pharm. Biopharm. 104, 260–270 (2016). https://doi.org/10.1016/j.ejpb.2016.04.011

    Article  Google Scholar 

  31. Šarac, B., Medoš, Ž., Cognigni, A., Bica, K., Chen, L.-J., Bešter-Rogač, M.: Thermodynamic study for micellization of imidazolium based surface active ionic liquids in water: effect of alkyl chain length and anions. Colloids Surf. A Physicochem. Eng. Aspects 532, 609–617 (2017). https://doi.org/10.1016/J.COLSURFA.2017.01.062

    Article  Google Scholar 

  32. Krouská, J., Pekař, M., Klučáková, M., Šarac, B., Bešter-Rogač, M.: Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry. Carbohydr. Polym. 157, 1837–1843 (2017). https://doi.org/10.1016/J.CARBPOL.2016.11.069

    Article  Google Scholar 

  33. Bai, G., Wang, Y., Ding, Y., Zhuo, K., Wang, J., Bastos, M.: Thermodynamics of self-assembling of mixture of a cationic gemini surfactant and sodium dodecylsulfate in aqueous solution: calorimetry, conductivity and surface pressure measurements. J. Chem. Thermodyn. 94, 221–229 (2016). https://doi.org/10.1016/J.JCT.2015.11.017

    Article  Google Scholar 

  34. Perspicace, S., Rufer, A.C., Thoma, R., Mueller, F., Hennig, M., Ceccarelli, S., Schulz-Gasch, T., Seelig, J.: Isothermal titration calorimetry with micelles: thermodynamics of inhibitor binding to carnitine palmitoyltransferase 2 membrane protein. FEBS Open Bio 3, 204–211 (2013). https://doi.org/10.1016/j.fob.2013.04.003

    Article  Google Scholar 

  35. Judy, E., Pagariya, D., Kishore, N.: Drug partitioning in micellar media and its implications in rational drug design: insights with streptomycin. Langmuir 34, 3467–3848 (2018). https://doi.org/10.1021/acs.langmuir.7b04346

    Article  Google Scholar 

  36. Kabiri, M., Unsworth, L.D.: Application of isothermal titration calorimetry for characterizing thermodynamic parameters of biomolecular interactions: peptide self-assembly and protein adsorption case studies. Biomacromolecules 15, 3463–3473 (2014). https://doi.org/10.1021/bm5004515

    Article  Google Scholar 

  37. Sikorska, E., Wyrzykowski, D., Szutkowski, K., Greber, K., Lubecka, E.A., Zhukov, I.: Thermodynamics, size, and dynamics of zwitterionic dodecylphosphocholine and anionic sodium dodecyl sulfate mixed micelles. J. Therm. Anal. Calorim. 123, 511–523 (2016). https://doi.org/10.1007/s10973-015-4918-0

    Article  Google Scholar 

  38. Tiné, M.R., Alderighi, M., Duce, C., Ghezzi, L., Solaro, R.: Effect of temperature on self-assembly of an ionic tetrapeptide. J. Therm. Anal. Calorim. 103, 75–80 (2011). https://doi.org/10.1007/s10973-010-1060-x

    Article  Google Scholar 

  39. Vargas, C., Arenas, R.C., Frotscher, E., Keller, S.: Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants. Nanoscale 7, 20685–20696 (2015). https://doi.org/10.1039/C5NR06353A

    Article  Google Scholar 

  40. Loosli, F., Vitorazi, L., Berret, J.-F., Stoll, S.: Isothermal titration calorimetry as a powerful tool to quantify and better understand agglomeration mechanisms during interaction processes between TiO2 nanoparticles and humic acids. Environ. Sci. Nano 2, 541–550 (2015). https://doi.org/10.1039/C5EN00139K

    Article  Google Scholar 

  41. Krouská, J., Pekař, M., Klučáková, M., Šarac, B., Bešter-Rogač, M.: Study of interactions between hyaluronan and cationic surfactants by means of calorimetry, turbidimetry, potentiometry and conductometry. Carbohydr. Polym. 157, 1837–1843 (2017). https://doi.org/10.1016/J.CARBPOL.2016.11.069

    Article  Google Scholar 

  42. Sastry, N.V., Singh, D.K., Trivedi, P.A.: Studies on micellar behavior of PEO-PBO or PEO-PBO-PEO copolymers, or surface active amphiphilic ionic liquids in aqueous media and exploration of the micellar solutions for solubilization of dexamethasone and its delayed release. J. Surf. Deterg. 21, 65–79 (2018). https://doi.org/10.1002/jsde.12020

    Article  Google Scholar 

  43. Šarac, B., Medoš, Ž., Cognigni, A., Bica, K., Chen, L.-J., Bešter-Rogač, M.: Thermodynamic study for micellization of imidazolium based surface active ionic liquids in water: Effect of alkyl chain length and anions. Colloids Surf. A Physicochem. Eng. Aspects 532, 609–617 (2017). https://doi.org/10.1016/J.COLSURFA.2017.01.062

    Article  Google Scholar 

  44. Patel, S.G., Bummer, P.M.: Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: an isothermal titration calorimetric study. Int. J. Pharm. 516, 131–143 (2017). https://doi.org/10.1016/J.IJPHARM.2016.10.053

    Article  Google Scholar 

  45. Loh, W., Brinatti, C., Tam, K.C.: Use of isothermal titration calorimetry to study surfactant aggregation in colloidal systems. Biochim. Biophys. Acta Gen. Subj. 1860, 999–1016 (2016). https://doi.org/10.1016/j.bbagen.2015.10.003

    Article  Google Scholar 

  46. Koper, G.J.M., Minkenberg, C.B., Upton, I.S., van Esch, J.H., Sudhölter, E.J.R.: Quantitatively interpreting thermal behavior of self-associating systems. J. Phys. Chem. B 113, 15597–15601 (2009). https://doi.org/10.1021/jp909153n

    Article  Google Scholar 

  47. Herrera, I., Winnik, M.A.: Differential binding models for isothermal titration calorimetry: moving beyond the Wiseman isotherm. J. Phys. Chem. B 117, 8659–8672 (2013). https://doi.org/10.1021/jp311812a

    Article  Google Scholar 

  48. Bouchemal, K., Mazzaferro, S.: How to conduct and interpret ITC experiments accurately for cyclodextrin–guest interactions. Drug Discov. Today 17, 623–629 (2012). https://doi.org/10.1016/J.DRUDIS.2012.01.023

    Article  Google Scholar 

  49. Wszelaka-Rylik, M., Gierycz, P.: Isothermal titration calorimetry (ITC) study of natural cyclodextrins inclusion complexes with tropane alkaloids. J. Therm. Anal. Calorim. 121, 1359–1364 (2015). https://doi.org/10.1007/s10973-015-4658-1

    Article  Google Scholar 

  50. Choudhary, S., Talele, P., Kishore, N.: Thermodynamic insights into drug–surfactant interactions: study of the interactions of naporxen, diclofenac sodium, neomycin, and lincomycin with hexadecytrimethylammonium bromide by using isothermal titration calorimetry. Colloids Surf. B Biointerfaces 132, 313–321 (2015). https://doi.org/10.1016/j.colsurfb.2015.05.031

    Article  Google Scholar 

  51. Mukhija, A., Kishore, N.: Partitioning of drugs in micelles and effect on micellization: physicochemical insights with tryptophan and diclofenac sodium. Colloids Surf. A Physicochem. Eng. Aspects 513, 204–214 (2017). https://doi.org/10.1016/J.COLSURFA.2016.10.044

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulia Bonacucina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perinelli, D.R., Bonacucina, G. (2019). Methodological Approaches for the Characterization of the Self-assembling Behaviour in the Pharmaceutical Field. In: Demetzos, C., Pippa, N. (eds) Thermodynamics and Biophysics of Biomedical Nanosystems. Series in BioEngineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0989-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0989-2_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0988-5

  • Online ISBN: 978-981-13-0989-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics