Skip to main content

Modifications of Poly(Methyl Methacrylate) Cement for Application in Orthopedic Surgery

  • Chapter
  • First Online:
Cutting-Edge Enabling Technologies for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Even with the emerging of newly-developed bone substitutes, poly(methyl methacrylate) (PMMA) cement is still a widely-used bone replacing biomaterial in orthopedic surgery with a long history. However, aseptic loosening, infection of the prosthesis and thermal necrosis to surrounding tissue are the common complications of PMMA. Therefore, additives have been incorporated in PMMA cement to target those problems. This chapter summarizes different additives to improve the performance of the PMMA cement, i.e.: (1) bioceramic additives; (2) filler additives; (3) antibacterial additives; (4) porogens; (5) biological agents, and (6) mixed additives. To improve the biological and mechanical performance of PMMA cement, mixed additives aiming to fabricate multifunctional PMMA seem the most suitable choice. Although in vivo animal studies have been conducted, long-term and clinical studies are still needed to evaluate the modifications of multifunctional PMMA cement for matching a specific clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn DK, Lee S, Choi DJ, Park SY, Woo DG, Kim CH, Kim HS (2009) Mechanical properties of blood-mixed polymethylmetacrylate in percutaneous vertebroplasty. Asian Spine J 3(2):45–52. https://doi.org/10.4184/asj.2009.3.2.45

    Article  PubMed  PubMed Central  Google Scholar 

  2. Allende C, Mangupli M, Bagliardelli J, Diaz P, Allende BT (2009) Infected nonunions of long bones of the upper extremity: staged reconstruction using polymethylmethacrylate and bone graft impregnated with antibiotics. Musculoskelet Surg 93(3):137–142. https://doi.org/10.1007/s12306-009-0046-y

    Article  Google Scholar 

  3. Andersson GB, Freeman MA, Swanson SA (1972) Loosening of the cemented acetabular cup in total hip replacement. J Bone Joint Surg Br 54(4):590–599

    Article  CAS  Google Scholar 

  4. Arabmotlagh M, Bachmaier S, Geiger F, Rauschmann M (2014) PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model. J Biomed Mater Res B Appl Biomater 102(8):1613–1619. https://doi.org/10.1002/jbm.b.33140

    Article  CAS  PubMed  Google Scholar 

  5. Arcos D, Ragel CV, Vallet-Regi M (2001) Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials 22(7):701–708. https://doi.org/10.1016/S0142-9612(00)00233-7

    Article  CAS  PubMed  Google Scholar 

  6. Arora M, Chan EK, Gupta S, Diwan AD (2013) Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop 4(2):67–74. https://doi.org/10.5312/wjo.v4.i2.67

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bertazzoni Minelli E, Caveiari C, Benini A (2002) Release of antibiotics from polymethylmethacrylate cement. J Chemother 14(5):492–500. https://doi.org/10.1179/joc.2002.14.5.492

    Article  CAS  PubMed  Google Scholar 

  8. Beruto DT, Botter R, Fini M (2002) The effect of water in inorganic microsponges of calcium phosphates on the porosity and permeability of composites made with polymethylmethacrylate. Biomaterials 23(12):2509–2517. https://doi.org/10.1016/S0142-9612(01)00385-4

    Article  CAS  PubMed  Google Scholar 

  9. Bettencourt A, Calado A, Amaral J, Alfaia A, Vale FM, Monteiro J, Montemor MF, Ferreira MG, Castro M (2004) Surface studies on acrylic bone cement. Int J Pharm 278(1):181–186. https://doi.org/10.1016/j.ijpharm.2004.03.011

    Article  CAS  PubMed  Google Scholar 

  10. Bowman A, Manley T (1984) The elimination of breakages in upper dentures by reinforcement with carbon fibre. Br Dent J 156(3):87–89. https://doi.org/10.1038/sj.bdj.4805275

    Article  CAS  PubMed  Google Scholar 

  11. Bozic KJ, Kurtz SM, Lau E, Ong K, Chiu V, Vail TP, Rubash HE, Berry DJ (2010) The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 468(1):45–51. https://doi.org/10.1007/s11999-009-0945-0

    Article  PubMed  Google Scholar 

  12. Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91(1):128–133. https://doi.org/10.2106/JBJS.H.00155

    Article  PubMed  Google Scholar 

  13. Bruens ML, Pieterman H, de Wijn JR, Vaandrager JM (2003) Porous polymethylmethacrylate as bone substitute in the craniofacial area. J Craniofac Surg 14(1):63–68. https://doi.org/10.1097/00001665-200301000-00011

    Article  PubMed  Google Scholar 

  14. Buchholz H, Elson R, Heinert K (1984) Antibiotic-loaded acrylic cement: current concepts. Clin Orthop Relat Res 190:96–108

    Google Scholar 

  15. Buchholz H, Engelbrecht H (1970) Depot effects of various antibiotics mixed with Palacos resins. Der Chirurg; Zeitschrift für alle Gebiete der operativen Medizen 41(11):511

    CAS  PubMed  Google Scholar 

  16. Cerretani D, Giorgi G, Fornara P, Bocchi L, Neri L, Ceffa R, Ghisellini F, Ritter MA (2002) The in vitro elution characteristics of vancomycin combined with imipenem-cilastatin in acrylic bone-cements: a pharmacokinetic study. J Arthroplast 17(5):619–626. https://doi.org/10.1054/arth.2002.32184

    Article  Google Scholar 

  17. Chen C-C, Wang C-W, Hsueh N-S, Ding S-J (2014) Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate. J Alloys Compd 585:25–31. https://doi.org/10.1016/j.jallcom.2013.09.138

    Article  CAS  Google Scholar 

  18. Chiu F-Y, Chen C-M, Lin C-FJ, Lo W-H (2002) Cefuroxime-impregnated cement in primary total knee arthroplasty- a prospective, randomized study of three hundred and forty knees. J Bone Joint Surg Am 84(5):759–762. https://doi.org/10.2106/00004623-200205000-00009

    Article  PubMed  Google Scholar 

  19. Chiu F-Y, Lin C-F, Chen C-M, Lo W-H, Chaung T-Y (2001) Cefuroxime-impregnated cement at primary total knee arthroplasty in diabetes mellitus- a prospective, randomised study. Bone & Joint Journal 83(5):691–695. https://doi.org/10.1302/0301-620X.83B5.11737

    Article  CAS  Google Scholar 

  20. Chohfi M, Langlais F, Fourastier J, Minet J, Thomazeau H, Cormier M (1998) Pharmacokinetics, uses, and limitations of vancomycin-loaded bone cement. Int Orthop 22(3):171–177. https://doi.org/10.1007/s002640050235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi SM, Yang WK, Yoo YW, Lee WK (2010) Effect of surface modification on the in vitro calcium phosphate growth on the surface of poly(methyl methacrylate) and bioactivity. Colloids Surf B Biointerfaces 76(1):326–333. https://doi.org/10.1016/j.colsurfb.2009.11.012

    Article  CAS  PubMed  Google Scholar 

  22. Chow LC (2001) Calcium phosphate cements. S Karger Pub 18:148–163

    CAS  Google Scholar 

  23. Crawford RW, Murray DW (1997) Total hip replacement: indications for surgery and risk factors for failure. Ann Rheum Dis 56(8):455–457. https://doi.org/10.1136/ard.56.8.455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Crowninshield R (2001) Femoral hip implant fixation within bone cement. Oper Tech Orthop 11(4):296–299

    Article  Google Scholar 

  25. Currey J (2001) Sacrificial bonds heal bone. Nature 414(6865):699. https://doi.org/10.1038/414699a

    Article  CAS  PubMed  Google Scholar 

  26. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (1999) In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite. J Mater Sci Mater Med 10(12):793–796. https://doi.org/10.1023/A:1008907218330

    Article  CAS  PubMed  Google Scholar 

  27. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2001) Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement. Biomaterials 22(13): 1739–1747. https://doi.org/10.1016/S0142-9612(00)00334-3, https://doi.org/10.1016/S0142-9612(00)00334-3

    Article  CAS  Google Scholar 

  28. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2002) Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 23(2):569–576. https://doi.org/10.1016/S0142-9612(01)00139-9

    Article  CAS  PubMed  Google Scholar 

  29. de Wijn JR (1982) Porous polymethylmethacrylate cement: development and evaluation of a potential implant material. PhD thesis, Catholic University, Nijmegen

    Google Scholar 

  30. Downes S, Wood DJ, Malcolm AJ, Ali SY (1990) Growth hormone in polymethylmethacrylate cement. Clin Orthop Relat Res 252:294–298

    Google Scholar 

  31. Dunne N (2008) Mechanical properties of bone cements. Orthopaedic bone cements. CRC, Boca Raton, pp 240–255

    Google Scholar 

  32. Eden OR, Lee AJ, Hooper RM (2002) Stress relaxation modelling of polymethylmethacrylate bone cement. Proc Inst Mech Eng H 216(3):195–199. https://doi.org/10.1243/0954411021536405

    Article  CAS  PubMed  Google Scholar 

  33. Engesæter L, Lie SA, Espehaug B, Furnes O, Vollset SE, Havelin LI (2003) Antibiotic prophylaxis in total hip arthroplasty effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian Arthroplasty Register. Acta Orthop Scand 74(6):644–651. https://doi.org/10.1080/00016470310018135

    Article  PubMed  Google Scholar 

  34. Fini M, Giavaresi G, Aldini NN, Torricelli P, Botter R, Beruto D, Giardino R (2002) A bone substitute composed of polymethylmethacrylate and alpha-tricalcium phosphate: results in terms of osteoblast function and bone tissue formation. Biomaterials 23(23):4523–4531. https://doi.org/10.1016/S0142-9612(02)00196-5

    Article  CAS  PubMed  Google Scholar 

  35. Fontanesi G, Giancecchi F, Ruini D, Rotini R (1981) [Use of acrylic cement with an antibiotic in prosthetic surgery of the hip]. La Chirurgia degli organi di movimento 68(3):287–295

    Google Scholar 

  36. Freeman M, Bradley G, Revell P (1982) Observations upon the interface between bone and polymethylmethacrylate cement. Bone Joint J 64(4):489–493

    Article  CAS  Google Scholar 

  37. Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 113(2):102–110. https://doi.org/10.1016/j.jconrel.2006.04.007

    Article  CAS  PubMed  Google Scholar 

  38. Golz T, Graham CR, Busch LC, Wulf J, Winder RJ (2010) Temperature elevation during simulated polymethylmethacrylate (PMMA) cranioplasty in a cadaver model. J Clin Neurosci 17(5):617–622. https://doi.org/10.1016/j.jocn.2009.09.005

    Article  CAS  PubMed  Google Scholar 

  39. Gualdrini G, Bassi A, Fravisini M, Giunti A (2004) Bone with cement and antibiotic: antibiotic release in vitro. La Chirurgia degli organi di movimento 90(1):23–29

    Google Scholar 

  40. He Q, Chen H, Huang L, Dong J, Guo D, Mao M, Kong L, Li Y, Wu Z, Lei W (2012) Porous surface modified bioactive bone cement for enhanced bone bonding. PLoS One 7(8):e42525. https://doi.org/10.1371/journal.pone.0042525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ishikawa K (2014) Calcium phosphate cement. Advances in calcium phosphate biomaterials. Springer, Berlin, pp 199–227

    Book  Google Scholar 

  42. Itokawa H, Hiraide T, Moriya M, Fujimoto M, Nagashima G, Suzuki R, Fujimoto T (2007) A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite. Biomaterials 28(33):4922–4927. https://doi.org/10.1016/j.biomaterials.2007.08.001

    Article  CAS  PubMed  Google Scholar 

  43. Jager M, Wilke A (2003) Comprehensive biocompatibility testing of a new PMMA-hA bone cement versus conventional PMMA cement in vitro. J Biomater Sci Polym Ed 14(11):1283–1298. https://doi.org/10.1163/156856203322553491

    Article  CAS  PubMed  Google Scholar 

  44. Jiranek WA, Hanssen AD, Greenwald AS (2006) Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg Am 88(11):2487–2500. https://doi.org/10.2106/JBJS.E.01126

    Article  PubMed  Google Scholar 

  45. Josefsson G, Gudmundsson G, Kolmert L, Wijkstrom S (1990) Prophylaxis with systemic antibiotics versus gentamicin bone cement in total hip arthroplasty. A five-year survey of 1688 hips. Clin Orthop Relat Res 253:173–178

    Google Scholar 

  46. Khaled SM, Charpentier PA, Rizkalla AS (2010) Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes. Acta Biomater 6(8):3178–3186. https://doi.org/10.1016/j.actbio.2010.02.024

    Article  CAS  PubMed  Google Scholar 

  47. Khaled SM, Charpentier PA, Rizkalla AS (2011) Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. J Biomater Appl 25(6):515–537. https://doi.org/10.1177/0885328209356944

    Article  CAS  PubMed  Google Scholar 

  48. Klemm K (2001) The use of antibiotic-containing bead chains in the treatment of chronic bone infections. Clin Microbiol Infect 7(1):28–31. https://doi.org/10.1046/j.1469-0691.2001.00186.x

    Article  CAS  PubMed  Google Scholar 

  49. Kretlow JD, Shi M, Young S, Spicer PP, Demian N, Jansen JA, Wong ME, Kasper FK, Mikos AG (2010) Evaluation of soft tissue coverage over porous polymethylmethacrylate space maintainers within nonhealing alveolar bone defects. Tissue Eng Part C Methods 16(6):1427–1438. https://doi.org/10.1089/ten.tec.2010.0046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kuhn K (2005) Chapter 3. 1: properties of bone cement-what is bone cement? The well-cemented total hip arthroplasty: theory and practice. Springer, Berlin

    Google Scholar 

  51. Kuhn K (2014) PMMA cements: are we aware what we are using. Springer, Berlin

    Google Scholar 

  52. Lai PL, Chen LH, Chen WJ, Chu IM (2013) Chemical and physical properties of bone cement for vertebroplasty. Biom J 36(4):162–167. https://doi.org/10.4103/2319-4170.112750

    Article  Google Scholar 

  53. Lawson KJ, Marks KE, Brems J, Rehm S (1990) Vancomycin vs tobramycin elution from polymethylmethacrylate: an in vitro study. Orthopedics 13(5):521–524

    CAS  PubMed  Google Scholar 

  54. Lewis G (1997) Properties of acrylic bone cement: state of the art review. J Biomed Mater Res 38(2):155–182. https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<155::AID-JBM10>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  55. Lewis G (2009) Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties: a state-of-the-art review. J Biomed Mater Res B Appl Biomater 89(2):558–574. https://doi.org/10.1002/jbm.b.31220

    Article  CAS  PubMed  Google Scholar 

  56. Lewis G (2016) Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.33643

    Article  Google Scholar 

  57. Lewis G, Janna S, Bhattaram A (2005) Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement. Biomaterials 26(20):4317–4325. https://doi.org/10.1016/j.biomaterials.2004.11.003

    Article  CAS  PubMed  Google Scholar 

  58. Li C, Mason J, Yakimicki D (2004) Thermal characterization of PMMA-based bone cement curing. J Mater Sci Mater Med 15(1):85–89. https://doi.org/10.1023/B:JMSM.0000010101.45352.d1

    Article  CAS  PubMed  Google Scholar 

  59. Lopez-Heredia MA, Sa Y, Salmon P, de Wijn JR, Wolke JG, Jansen JA (2012) Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Acta Biomater 8(8):3120–3127. https://doi.org/10.1016/j.actbio.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  60. Lye KW, Lee S, Tideman H, Merkx MA, Jansen JA (2011) Temperature changes in a cemented mandibular endoprosthesis: in vitro and in vivo studies. Int J Oral Maxillofac Surg 40(1):86–93. https://doi.org/10.1016/j.ijom.2010.09.021

    Article  CAS  PubMed  Google Scholar 

  61. Lye KW, Tideman H, Merkx MA, Jansen JA (2009) Bone cements and their potential use in a mandibular endoprosthesis. Tissue Eng Part B Rev 15(4):485–496. https://doi.org/10.1089/ten.TEB.2009.0139

    Article  CAS  PubMed  Google Scholar 

  62. Lye KW, Tideman H, Wolke JC, Merkx MA, Chin FK, Jansen JA (2013) Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue. Clin Oral Implants Res 24(Suppl A100):100–109. https://doi.org/10.1111/j.1600-0501.2011.02388.x

    Article  PubMed  Google Scholar 

  63. Lynch M, Esser MP, Shelley P, Wroblewski BM (1987) Deep infection in Charnley low-friction arthroplasty. Comparison of plain and gentamicin-loaded cement. J Bone Joint Surg Br 69(3):355–360

    Article  CAS  Google Scholar 

  64. Magnan B, Bondi M, Maluta T, Samaila E, Schirru L, Dall'Oca C (2013) Acrylic bone cement: current concept review. Musculoskelet Surg 97(2):93–100. https://doi.org/10.1007/s12306-013-0293-9

    Article  CAS  PubMed  Google Scholar 

  65. Marks KE, Nelson CL, Lautenschlager EP (1976) Antibiotic-impregnated acrylic bone cement. J Bone Joint Surg Am 58(3):358–364

    Article  CAS  Google Scholar 

  66. Masri BA, Duncan CP, Beauchamp CP (1998) Long-term elution of antibiotics from bone-cement: an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system. J Arthroplast 13(3):331–338. https://doi.org/10.1016/S0883-5403(98)90179-6

    Article  CAS  Google Scholar 

  67. Minelli EB, Benini A, Magnan B, Bartolozzi P (2004) Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty. J Antimicrob Chemother 53(2):329–334. https://doi.org/10.1093/jac/dkh032

    Article  CAS  Google Scholar 

  68. Moore WR, Graves SE, Bain GI (2001) Synthetic bone graft substitutes. ANZ J Surg 71(6):354–361

    Article  CAS  Google Scholar 

  69. Moreira-Gonzalez A, Jackson IT, Miyawaki T, Barakat K, DiNick V (2003) Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg 14(2):144–153. https://doi.org/10.1097/00001665-200303000-00003

    Article  PubMed  Google Scholar 

  70. Moseley JP, Lemons JE, Mays JW (1999) The development and characterization of a fracture-toughened acrylic for luting total joint arthroplasties. J Biomed Mater Res 47(4):529–536

    Article  CAS  Google Scholar 

  71. Mousa WF, Kobayashi M, Shinzato S, Kamimura M, Neo M, Yoshihara S, Nakamura T (2000) Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials 21(21):2137–2146. https://doi.org/10.1016/S0142-9612(00)00097-1

    Article  CAS  PubMed  Google Scholar 

  72. Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ (2003) The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. Acta Orthop Scand 74(6):670–676. https://doi.org/10.1080/00016470310018180

    Article  PubMed  Google Scholar 

  73. Nottrott M (2010) Acrylic bone cements: influence of time and environment on physical properties. Acta Orthop Suppl 81(341):1–27. https://doi.org/10.3109/17453674.2010.487929

    Article  PubMed  Google Scholar 

  74. Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325

    Article  Google Scholar 

  75. Penner MJ, Duncan CP, Masri BA (1999) The in vitro elution characteristics of antibiotic-loaded CMW and Palacos-R bone cements. J Arthroplast 14(2):209–214

    Article  CAS  Google Scholar 

  76. Penner MJ, Masri BA, Duncan CP (1996) Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement. J Arthroplast 11(8):939–944

    Article  CAS  Google Scholar 

  77. Perry A, Mahar A, Massie J, Arrieta N, Garfin S, Kim C (2005) Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model. Spine J 5(5):489–493

    Article  Google Scholar 

  78. Pritchett JW (1992) Human growth hormone in polymethyl methacrylate. A controlled study of 15 hip arthroplasties. Acta Orthop Scand 63(5):520–522. https://doi.org/10.3109/17453679209154727

    Article  CAS  PubMed  Google Scholar 

  79. Puckett AD, Roberts B, Bu L, Mays JW (2000) Improved orthopaedic bone cement formulations based on rubber toughening. Crit Rev Biomed Eng 28(3–4):457–461. https://doi.org/10.1615/CritRevBiomedEng.v28.i34.180

    Article  CAS  PubMed  Google Scholar 

  80. Sa Y, Wang M, Deng H, Wang Y, Jiang T (2015a) Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate. RSC Adv 5(110):91082–91092. https://doi.org/10.1039/c5ra15915f

    Article  CAS  Google Scholar 

  81. Sa Y, Yang F, de Wijn JR, Wang Y, Wolke JG, Jansen JA (2016) Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid. Mater Sci Eng C Mater Biol Appl 61:190–198. https://doi.org/10.1016/j.msec.2015.12.040

    Article  CAS  PubMed  Google Scholar 

  82. Sa Y, Yang F, Leeuwenburgh SC, Wolke JG, Ye G, de Wijn JR, Jansen JA, Wang Y (2015b) Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles. J Biomed Mater Res B Appl Biomater 103(3):548–555. https://doi.org/10.1002/jbm.b.33233

    Article  CAS  PubMed  Google Scholar 

  83. Sa Y, Yu N, Wolke JGC, Chanchareonsook N, Goh BT, Wang Y, Yang F, Jansen JA (2017) Bone response to porous poly(methyl methacrylate) cement loaded with hydroxyapatite particles in a rabbit mandibular model. Tissue Eng Part C Methods 23(5):262–273. https://doi.org/10.1089/ten.TEC.2016.0521

    Article  CAS  PubMed  Google Scholar 

  84. Saha S, Pal S (1984) Mechanical properties of bone cement: a review. Wiley Online Libr 18:435–462

    CAS  Google Scholar 

  85. Saleh KJ, El Othmani MM, Tzeng TH, Mihalko WM, Chambers MC, Grupp TM (2016) Acrylic bone cement in total joint arthroplasty: a review. J Orthop Res 34(5):737–744. https://doi.org/10.1002/jor.23184

    Article  CAS  PubMed  Google Scholar 

  86. Shi M, Kretlow JD, Nguyen A, Young S, Scott Baggett L, Wong ME, Kasper FK, Mikos AG (2010) Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials 31(14):4146–4156. https://doi.org/10.1016/j.biomaterials.2010.01.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shi M, Kretlow JD, Spicer PP, Tabata Y, Demian N, Wong ME, Kasper FK, Mikos AG (2011) Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J Control Release 152(1):196–205. https://doi.org/10.1016/j.jconrel.2011.01.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shinzato S, Nakamura T, Kokubo T, Kitamura Y (2001) Bioactive bone cement: effect of filler size on mechanical properties and osteoconductivity. J Biomed Mater Res 56(3):452–458. https://doi.org/10.1002/1097-4636(20010905)56:3<452::AID-JBM1115>3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  89. Spicer PP, Kretlow JD, Henslee AM, Shi M, Young S, Demian N, Jansen JA, Wong ME, Mikos AG, Kasper FK (2012) In situ formation of porous space maintainers in a composite tissue defect. J Biomed Mater Res A 100(4):827–833. https://doi.org/10.1002/jbm.a.34016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Spicer PP, Shah SR, Henslee AM, Watson BM, Kinard LA, Kretlow JD, Bevil K, Kattchee L, Bennett GN, Demian N, Mende K, Murray CK, Jansen JA, Wong ME, Mikos AG, Kasper FK (2013) Evaluation of antibiotic releasing porous polymethylmethacrylate space maintainers in an infected composite tissue defect model. Acta Biomater 9(11):8832–8839. https://doi.org/10.1016/j.actbio.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  91. Stanczyk M, van Rietbergen B (2004) Thermal analysis of bone cement polymerisation at the cement-bone interface. J Biomech 37(12):1803–1810. https://doi.org/10.1016/j.jbiomech.2004.03.002

    Article  CAS  PubMed  Google Scholar 

  92. Sugino A, Ohtsuki C, Miyazaki T (2008) In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate. J Biomater Appl 23(3):213–228. https://doi.org/10.1177/0885328207081694

    Article  CAS  PubMed  Google Scholar 

  93. Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77(2):177–197

    Article  Google Scholar 

  94. Topoleski LD, Ducheyne P, Cuckler JM (1992) The fracture toughness of titanium-fiber-reinforced bone cement. J Biomed Mater Res 26(12):1599–1617. https://doi.org/10.1002/jbm.820261206

    Article  CAS  PubMed  Google Scholar 

  95. Torholm C, Lidgren L, Lindberg L, Kahlmeter G (1983) Total hip joint arthroplasty with gentamicin-impregnated cement: a clinical study of gentamicin excretion kinetics. Clin Orthop Relat Res 181:99–106

    Google Scholar 

  96. Torricelli P, Fini M, Giavaresi G, Botter R, Beruto D, Giardino R (2003) Biomimetic PMMA-based bone substitutes: a comparative in vitro evaluation of the effects of pulsed electromagnetic field exposure. J Biomed Mater Res A 64(1):182–188. https://doi.org/10.1002/jbm.a.10372

    Article  CAS  PubMed  Google Scholar 

  97. Vallo CI, Montemartini PE, Fanovich MA, Porto Lopez JM, Cuadrado TR (1999) Polymethylmethacrylate-based bone cement modified with hydroxyapatite. J Biomed Mater Res 48(2):150–158

    Article  CAS  Google Scholar 

  98. van Mullem PJ, de Wijn JR (1988) Bone and soft connective tissue response to porous acrylic implants. A histokinetic study. J Craniomaxillofac Surg 16(3):99–109. https://doi.org/10.1016/S1010-5182(88)80029-5

    Article  PubMed  Google Scholar 

  99. van Mullem PJ, de Wijn JR, Vaandrager JM (1988) Porous acrylic cement: evaluation of a novel implant material. Ann Plast Surg 21(6):576–582. https://doi.org/10.1097/00000637-198812000-00015

    Article  PubMed  Google Scholar 

  100. van Mullem PJ, Vaandrager JM, Nicolai JP, de Wijn JR (1990) Implantation of porous acrylic cement in soft tissues: an animal and human biopsy histological study. Biomaterials 11(5):299–304. https://doi.org/10.1016/0142-9612(90)90105-Y

    Article  PubMed  Google Scholar 

  101. Verrier S, Hughes L, Alves A, Peroglio M, Alini M, Boger A (2012) Evaluation of the in vitro cell-material interactions and in vivo osteo-integration of a spinal acrylic bone cement. Eur Spine J 21(Suppl 6):S800–S809. https://doi.org/10.1007/s00586-011-1945-9

    Article  PubMed  Google Scholar 

  102. Wahlig H, Dingeldein E (1980) Antibiotics and bone cements. Experimental and clinical long-term observations. Acta Orthop Scand 51(1):49–56. https://doi.org/10.3109/17453678008990768

    Article  CAS  PubMed  Google Scholar 

  103. Wang H, Zhi W, Lu X, Li X, Duan K, Duan R, Mu Y, Weng J (2013a) Comparative studies on ectopic bone formation in porous hydroxyapatite scaffolds with complementary pore structures. Acta Biomater 9(9):8413–8421. https://doi.org/10.1016/j.actbio.2013.05.026

    Article  CAS  PubMed  Google Scholar 

  104. Wang J, Zhu C, Cheng T, Peng X, Zhang W, Qin H, Zhang X (2013b) A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS One 8(12):e82745. https://doi.org/10.1371/journal.pone.0082745

    Article  PubMed  PubMed Central  Google Scholar 

  105. Wang JS, Franzén H, Toksvig-Larsen S, Lidgren L (1995) Does vacuum mixing of bone cement affect heat generation? Analysis of four cement brands. J Appl Biomater 6(2):105–108

    Article  CAS  Google Scholar 

  106. Wang L, Yoon DM, Spicer PP, Henslee AM, Scott DW, Wong ME, Kasper FK, Mikos AG (2013c) Characterization of porous polymethylmethacrylate space maintainers for craniofacial reconstruction. J Biomed Mater Res B Appl Biomater 101(5):813–825. https://doi.org/10.1002/jbm.b.32885

    Article  CAS  PubMed  Google Scholar 

  107. Wang M, Feng X, Wang T, Gao Y, Wang Y, Sa Y, Jiang T (2016) Synthesis and characterization of an injectable and self-curing poly (methyl methacrylate) cement functionalized with a biomimetic chitosan–poly (vinyl alcohol)/nano-sized hydroxyapatite/silver hydrogel. RSC Adv 6(65):60609–60619. https://doi.org/10.1039/c6ra08182g

    Article  CAS  Google Scholar 

  108. Webb JC, Spencer RF (2007) The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br 89(7):851–857. https://doi.org/10.1302/0301-620X.89B7.19148

    Article  CAS  PubMed  Google Scholar 

  109. Wyatt M, Hooper G, Frampton C, Rothwell A (2014) Survival outcomes of cemented compared to uncemented stems in primary total hip replacement. World J Orthop 5(5):591–596. https://doi.org/10.5312/wjo.v5.i5.591

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yi X, Wang Y, Lu H, Li C, Zhu T (2008) Augmentation of pedicle screw fixation strength using an injectable calcium sulfate cement: an in vivo study. Spine (Phila Pa 1976) 33(23):2503–2509. https://doi.org/10.1097/BRS.0b013e318184e750

    Article  Google Scholar 

  111. Zhang J, Liu W, Schnitzler V, Tancret F, Bouler JM (2014) Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 10(3):1035–1049. https://doi.org/10.1016/j.actbio.2013.11.001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81500887).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Jansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sa, Y., Yang, F., Wang, Y., Wolke, J.G.C., Jansen, J.A. (2018). Modifications of Poly(Methyl Methacrylate) Cement for Application in Orthopedic Surgery. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_7

Download citation

Publish with us

Policies and ethics