Abstract
Even with the emerging of newly-developed bone substitutes, poly(methyl methacrylate) (PMMA) cement is still a widely-used bone replacing biomaterial in orthopedic surgery with a long history. However, aseptic loosening, infection of the prosthesis and thermal necrosis to surrounding tissue are the common complications of PMMA. Therefore, additives have been incorporated in PMMA cement to target those problems. This chapter summarizes different additives to improve the performance of the PMMA cement, i.e.: (1) bioceramic additives; (2) filler additives; (3) antibacterial additives; (4) porogens; (5) biological agents, and (6) mixed additives. To improve the biological and mechanical performance of PMMA cement, mixed additives aiming to fabricate multifunctional PMMA seem the most suitable choice. Although in vivo animal studies have been conducted, long-term and clinical studies are still needed to evaluate the modifications of multifunctional PMMA cement for matching a specific clinical application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn DK, Lee S, Choi DJ, Park SY, Woo DG, Kim CH, Kim HS (2009) Mechanical properties of blood-mixed polymethylmetacrylate in percutaneous vertebroplasty. Asian Spine J 3(2):45–52. https://doi.org/10.4184/asj.2009.3.2.45
Allende C, Mangupli M, Bagliardelli J, Diaz P, Allende BT (2009) Infected nonunions of long bones of the upper extremity: staged reconstruction using polymethylmethacrylate and bone graft impregnated with antibiotics. Musculoskelet Surg 93(3):137–142. https://doi.org/10.1007/s12306-009-0046-y
Andersson GB, Freeman MA, Swanson SA (1972) Loosening of the cemented acetabular cup in total hip replacement. J Bone Joint Surg Br 54(4):590–599
Arabmotlagh M, Bachmaier S, Geiger F, Rauschmann M (2014) PMMA-hydroxyapatite composite material retards fatigue failure of augmented bone compared to augmentation with plain PMMA: in vivo study using a sheep model. J Biomed Mater Res B Appl Biomater 102(8):1613–1619. https://doi.org/10.1002/jbm.b.33140
Arcos D, Ragel CV, Vallet-Regi M (2001) Bioactivity in glass/PMMA composites used as drug delivery system. Biomaterials 22(7):701–708. https://doi.org/10.1016/S0142-9612(00)00233-7
Arora M, Chan EK, Gupta S, Diwan AD (2013) Polymethylmethacrylate bone cements and additives: a review of the literature. World J Orthop 4(2):67–74. https://doi.org/10.5312/wjo.v4.i2.67
Bertazzoni Minelli E, Caveiari C, Benini A (2002) Release of antibiotics from polymethylmethacrylate cement. J Chemother 14(5):492–500. https://doi.org/10.1179/joc.2002.14.5.492
Beruto DT, Botter R, Fini M (2002) The effect of water in inorganic microsponges of calcium phosphates on the porosity and permeability of composites made with polymethylmethacrylate. Biomaterials 23(12):2509–2517. https://doi.org/10.1016/S0142-9612(01)00385-4
Bettencourt A, Calado A, Amaral J, Alfaia A, Vale FM, Monteiro J, Montemor MF, Ferreira MG, Castro M (2004) Surface studies on acrylic bone cement. Int J Pharm 278(1):181–186. https://doi.org/10.1016/j.ijpharm.2004.03.011
Bowman A, Manley T (1984) The elimination of breakages in upper dentures by reinforcement with carbon fibre. Br Dent J 156(3):87–89. https://doi.org/10.1038/sj.bdj.4805275
Bozic KJ, Kurtz SM, Lau E, Ong K, Chiu V, Vail TP, Rubash HE, Berry DJ (2010) The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 468(1):45–51. https://doi.org/10.1007/s11999-009-0945-0
Bozic KJ, Kurtz SM, Lau E, Ong K, Vail TP, Berry DJ (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91(1):128–133. https://doi.org/10.2106/JBJS.H.00155
Bruens ML, Pieterman H, de Wijn JR, Vaandrager JM (2003) Porous polymethylmethacrylate as bone substitute in the craniofacial area. J Craniofac Surg 14(1):63–68. https://doi.org/10.1097/00001665-200301000-00011
Buchholz H, Elson R, Heinert K (1984) Antibiotic-loaded acrylic cement: current concepts. Clin Orthop Relat Res 190:96–108
Buchholz H, Engelbrecht H (1970) Depot effects of various antibiotics mixed with Palacos resins. Der Chirurg; Zeitschrift für alle Gebiete der operativen Medizen 41(11):511
Cerretani D, Giorgi G, Fornara P, Bocchi L, Neri L, Ceffa R, Ghisellini F, Ritter MA (2002) The in vitro elution characteristics of vancomycin combined with imipenem-cilastatin in acrylic bone-cements: a pharmacokinetic study. J Arthroplast 17(5):619–626. https://doi.org/10.1054/arth.2002.32184
Chen C-C, Wang C-W, Hsueh N-S, Ding S-J (2014) Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate. J Alloys Compd 585:25–31. https://doi.org/10.1016/j.jallcom.2013.09.138
Chiu F-Y, Chen C-M, Lin C-FJ, Lo W-H (2002) Cefuroxime-impregnated cement in primary total knee arthroplasty- a prospective, randomized study of three hundred and forty knees. J Bone Joint Surg Am 84(5):759–762. https://doi.org/10.2106/00004623-200205000-00009
Chiu F-Y, Lin C-F, Chen C-M, Lo W-H, Chaung T-Y (2001) Cefuroxime-impregnated cement at primary total knee arthroplasty in diabetes mellitus- a prospective, randomised study. Bone & Joint Journal 83(5):691–695. https://doi.org/10.1302/0301-620X.83B5.11737
Chohfi M, Langlais F, Fourastier J, Minet J, Thomazeau H, Cormier M (1998) Pharmacokinetics, uses, and limitations of vancomycin-loaded bone cement. Int Orthop 22(3):171–177. https://doi.org/10.1007/s002640050235
Choi SM, Yang WK, Yoo YW, Lee WK (2010) Effect of surface modification on the in vitro calcium phosphate growth on the surface of poly(methyl methacrylate) and bioactivity. Colloids Surf B Biointerfaces 76(1):326–333. https://doi.org/10.1016/j.colsurfb.2009.11.012
Chow LC (2001) Calcium phosphate cements. S Karger Pub 18:148–163
Crawford RW, Murray DW (1997) Total hip replacement: indications for surgery and risk factors for failure. Ann Rheum Dis 56(8):455–457. https://doi.org/10.1136/ard.56.8.455
Crowninshield R (2001) Femoral hip implant fixation within bone cement. Oper Tech Orthop 11(4):296–299
Currey J (2001) Sacrificial bonds heal bone. Nature 414(6865):699. https://doi.org/10.1038/414699a
Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (1999) In vitro evaluation of a new polymethylmethacrylate cement reinforced with hydroxyapatite. J Mater Sci Mater Med 10(12):793–796. https://doi.org/10.1023/A:1008907218330
Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2001) Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement. Biomaterials 22(13): 1739–1747. https://doi.org/10.1016/S0142-9612(00)00334-3, https://doi.org/10.1016/S0142-9612(00)00334-3
Dalby MJ, Di Silvio L, Harper EJ, Bonfield W (2002) Increasing hydroxyapatite incorporation into poly(methylmethacrylate) cement increases osteoblast adhesion and response. Biomaterials 23(2):569–576. https://doi.org/10.1016/S0142-9612(01)00139-9
de Wijn JR (1982) Porous polymethylmethacrylate cement: development and evaluation of a potential implant material. PhD thesis, Catholic University, Nijmegen
Downes S, Wood DJ, Malcolm AJ, Ali SY (1990) Growth hormone in polymethylmethacrylate cement. Clin Orthop Relat Res 252:294–298
Dunne N (2008) Mechanical properties of bone cements. Orthopaedic bone cements. CRC, Boca Raton, pp 240–255
Eden OR, Lee AJ, Hooper RM (2002) Stress relaxation modelling of polymethylmethacrylate bone cement. Proc Inst Mech Eng H 216(3):195–199. https://doi.org/10.1243/0954411021536405
Engesæter L, Lie SA, Espehaug B, Furnes O, Vollset SE, Havelin LI (2003) Antibiotic prophylaxis in total hip arthroplasty effects of antibiotic prophylaxis systemically and in bone cement on the revision rate of 22,170 primary hip replacements followed 0–14 years in the Norwegian Arthroplasty Register. Acta Orthop Scand 74(6):644–651. https://doi.org/10.1080/00016470310018135
Fini M, Giavaresi G, Aldini NN, Torricelli P, Botter R, Beruto D, Giardino R (2002) A bone substitute composed of polymethylmethacrylate and alpha-tricalcium phosphate: results in terms of osteoblast function and bone tissue formation. Biomaterials 23(23):4523–4531. https://doi.org/10.1016/S0142-9612(02)00196-5
Fontanesi G, Giancecchi F, Ruini D, Rotini R (1981) [Use of acrylic cement with an antibiotic in prosthetic surgery of the hip]. La Chirurgia degli organi di movimento 68(3):287–295
Freeman M, Bradley G, Revell P (1982) Observations upon the interface between bone and polymethylmethacrylate cement. Bone Joint J 64(4):489–493
Ginebra MP, Traykova T, Planell JA (2006) Calcium phosphate cements as bone drug delivery systems: a review. J Control Release 113(2):102–110. https://doi.org/10.1016/j.jconrel.2006.04.007
Golz T, Graham CR, Busch LC, Wulf J, Winder RJ (2010) Temperature elevation during simulated polymethylmethacrylate (PMMA) cranioplasty in a cadaver model. J Clin Neurosci 17(5):617–622. https://doi.org/10.1016/j.jocn.2009.09.005
Gualdrini G, Bassi A, Fravisini M, Giunti A (2004) Bone with cement and antibiotic: antibiotic release in vitro. La Chirurgia degli organi di movimento 90(1):23–29
He Q, Chen H, Huang L, Dong J, Guo D, Mao M, Kong L, Li Y, Wu Z, Lei W (2012) Porous surface modified bioactive bone cement for enhanced bone bonding. PLoS One 7(8):e42525. https://doi.org/10.1371/journal.pone.0042525
Ishikawa K (2014) Calcium phosphate cement. Advances in calcium phosphate biomaterials. Springer, Berlin, pp 199–227
Itokawa H, Hiraide T, Moriya M, Fujimoto M, Nagashima G, Suzuki R, Fujimoto T (2007) A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite. Biomaterials 28(33):4922–4927. https://doi.org/10.1016/j.biomaterials.2007.08.001
Jager M, Wilke A (2003) Comprehensive biocompatibility testing of a new PMMA-hA bone cement versus conventional PMMA cement in vitro. J Biomater Sci Polym Ed 14(11):1283–1298. https://doi.org/10.1163/156856203322553491
Jiranek WA, Hanssen AD, Greenwald AS (2006) Antibiotic-loaded bone cement for infection prophylaxis in total joint replacement. J Bone Joint Surg Am 88(11):2487–2500. https://doi.org/10.2106/JBJS.E.01126
Josefsson G, Gudmundsson G, Kolmert L, Wijkstrom S (1990) Prophylaxis with systemic antibiotics versus gentamicin bone cement in total hip arthroplasty. A five-year survey of 1688 hips. Clin Orthop Relat Res 253:173–178
Khaled SM, Charpentier PA, Rizkalla AS (2010) Synthesis and characterization of poly(methyl methacrylate)-based experimental bone cements reinforced with TiO2-SrO nanotubes. Acta Biomater 6(8):3178–3186. https://doi.org/10.1016/j.actbio.2010.02.024
Khaled SM, Charpentier PA, Rizkalla AS (2011) Physical and mechanical properties of PMMA bone cement reinforced with nano-sized titania fibers. J Biomater Appl 25(6):515–537. https://doi.org/10.1177/0885328209356944
Klemm K (2001) The use of antibiotic-containing bead chains in the treatment of chronic bone infections. Clin Microbiol Infect 7(1):28–31. https://doi.org/10.1046/j.1469-0691.2001.00186.x
Kretlow JD, Shi M, Young S, Spicer PP, Demian N, Jansen JA, Wong ME, Kasper FK, Mikos AG (2010) Evaluation of soft tissue coverage over porous polymethylmethacrylate space maintainers within nonhealing alveolar bone defects. Tissue Eng Part C Methods 16(6):1427–1438. https://doi.org/10.1089/ten.tec.2010.0046
Kuhn K (2005) Chapter 3. 1: properties of bone cement-what is bone cement? The well-cemented total hip arthroplasty: theory and practice. Springer, Berlin
Kuhn K (2014) PMMA cements: are we aware what we are using. Springer, Berlin
Lai PL, Chen LH, Chen WJ, Chu IM (2013) Chemical and physical properties of bone cement for vertebroplasty. Biom J 36(4):162–167. https://doi.org/10.4103/2319-4170.112750
Lawson KJ, Marks KE, Brems J, Rehm S (1990) Vancomycin vs tobramycin elution from polymethylmethacrylate: an in vitro study. Orthopedics 13(5):521–524
Lewis G (1997) Properties of acrylic bone cement: state of the art review. J Biomed Mater Res 38(2):155–182. https://doi.org/10.1002/(SICI)1097-4636(199722)38:2<155::AID-JBM10>3.0.CO;2-C
Lewis G (2009) Properties of antibiotic-loaded acrylic bone cements for use in cemented arthroplasties: a state-of-the-art review. J Biomed Mater Res B Appl Biomater 89(2):558–574. https://doi.org/10.1002/jbm.b.31220
Lewis G (2016) Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review. J Biomed Mater Res B Appl Biomater. https://doi.org/10.1002/jbm.b.33643
Lewis G, Janna S, Bhattaram A (2005) Influence of the method of blending an antibiotic powder with an acrylic bone cement powder on physical, mechanical, and thermal properties of the cured cement. Biomaterials 26(20):4317–4325. https://doi.org/10.1016/j.biomaterials.2004.11.003
Li C, Mason J, Yakimicki D (2004) Thermal characterization of PMMA-based bone cement curing. J Mater Sci Mater Med 15(1):85–89. https://doi.org/10.1023/B:JMSM.0000010101.45352.d1
Lopez-Heredia MA, Sa Y, Salmon P, de Wijn JR, Wolke JG, Jansen JA (2012) Bulk properties and bioactivity assessment of porous polymethylmethacrylate cement loaded with calcium phosphates under simulated physiological conditions. Acta Biomater 8(8):3120–3127. https://doi.org/10.1016/j.actbio.2012.05.007
Lye KW, Lee S, Tideman H, Merkx MA, Jansen JA (2011) Temperature changes in a cemented mandibular endoprosthesis: in vitro and in vivo studies. Int J Oral Maxillofac Surg 40(1):86–93. https://doi.org/10.1016/j.ijom.2010.09.021
Lye KW, Tideman H, Merkx MA, Jansen JA (2009) Bone cements and their potential use in a mandibular endoprosthesis. Tissue Eng Part B Rev 15(4):485–496. https://doi.org/10.1089/ten.TEB.2009.0139
Lye KW, Tideman H, Wolke JC, Merkx MA, Chin FK, Jansen JA (2013) Biocompatibility and bone formation with porous modified PMMA in normal and irradiated mandibular tissue. Clin Oral Implants Res 24(Suppl A100):100–109. https://doi.org/10.1111/j.1600-0501.2011.02388.x
Lynch M, Esser MP, Shelley P, Wroblewski BM (1987) Deep infection in Charnley low-friction arthroplasty. Comparison of plain and gentamicin-loaded cement. J Bone Joint Surg Br 69(3):355–360
Magnan B, Bondi M, Maluta T, Samaila E, Schirru L, Dall'Oca C (2013) Acrylic bone cement: current concept review. Musculoskelet Surg 97(2):93–100. https://doi.org/10.1007/s12306-013-0293-9
Marks KE, Nelson CL, Lautenschlager EP (1976) Antibiotic-impregnated acrylic bone cement. J Bone Joint Surg Am 58(3):358–364
Masri BA, Duncan CP, Beauchamp CP (1998) Long-term elution of antibiotics from bone-cement: an in vivo study using the prosthesis of antibiotic-loaded acrylic cement (PROSTALAC) system. J Arthroplast 13(3):331–338. https://doi.org/10.1016/S0883-5403(98)90179-6
Minelli EB, Benini A, Magnan B, Bartolozzi P (2004) Release of gentamicin and vancomycin from temporary human hip spacers in two-stage revision of infected arthroplasty. J Antimicrob Chemother 53(2):329–334. https://doi.org/10.1093/jac/dkh032
Moore WR, Graves SE, Bain GI (2001) Synthetic bone graft substitutes. ANZ J Surg 71(6):354–361
Moreira-Gonzalez A, Jackson IT, Miyawaki T, Barakat K, DiNick V (2003) Clinical outcome in cranioplasty: critical review in long-term follow-up. J Craniofac Surg 14(2):144–153. https://doi.org/10.1097/00001665-200303000-00003
Moseley JP, Lemons JE, Mays JW (1999) The development and characterization of a fracture-toughened acrylic for luting total joint arthroplasties. J Biomed Mater Res 47(4):529–536
Mousa WF, Kobayashi M, Shinzato S, Kamimura M, Neo M, Yoshihara S, Nakamura T (2000) Biological and mechanical properties of PMMA-based bioactive bone cements. Biomaterials 21(21):2137–2146. https://doi.org/10.1016/S0142-9612(00)00097-1
Neut D, van de Belt H, van Horn JR, van der Mei HC, Busscher HJ (2003) The effect of mixing on gentamicin release from polymethylmethacrylate bone cements. Acta Orthop Scand 74(6):670–676. https://doi.org/10.1080/00016470310018180
Nottrott M (2010) Acrylic bone cements: influence of time and environment on physical properties. Acta Orthop Suppl 81(341):1–27. https://doi.org/10.3109/17453674.2010.487929
Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325
Penner MJ, Duncan CP, Masri BA (1999) The in vitro elution characteristics of antibiotic-loaded CMW and Palacos-R bone cements. J Arthroplast 14(2):209–214
Penner MJ, Masri BA, Duncan CP (1996) Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement. J Arthroplast 11(8):939–944
Perry A, Mahar A, Massie J, Arrieta N, Garfin S, Kim C (2005) Biomechanical evaluation of kyphoplasty with calcium sulfate cement in a cadaveric osteoporotic vertebral compression fracture model. Spine J 5(5):489–493
Pritchett JW (1992) Human growth hormone in polymethyl methacrylate. A controlled study of 15 hip arthroplasties. Acta Orthop Scand 63(5):520–522. https://doi.org/10.3109/17453679209154727
Puckett AD, Roberts B, Bu L, Mays JW (2000) Improved orthopaedic bone cement formulations based on rubber toughening. Crit Rev Biomed Eng 28(3–4):457–461. https://doi.org/10.1615/CritRevBiomedEng.v28.i34.180
Sa Y, Wang M, Deng H, Wang Y, Jiang T (2015a) Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate. RSC Adv 5(110):91082–91092. https://doi.org/10.1039/c5ra15915f
Sa Y, Yang F, de Wijn JR, Wang Y, Wolke JG, Jansen JA (2016) Physicochemical properties and mineralization assessment of porous polymethylmethacrylate cement loaded with hydroxyapatite in simulated body fluid. Mater Sci Eng C Mater Biol Appl 61:190–198. https://doi.org/10.1016/j.msec.2015.12.040
Sa Y, Yang F, Leeuwenburgh SC, Wolke JG, Ye G, de Wijn JR, Jansen JA, Wang Y (2015b) Physicochemical properties and in vitro mineralization of porous polymethylmethacrylate cement loaded with calcium phosphate particles. J Biomed Mater Res B Appl Biomater 103(3):548–555. https://doi.org/10.1002/jbm.b.33233
Sa Y, Yu N, Wolke JGC, Chanchareonsook N, Goh BT, Wang Y, Yang F, Jansen JA (2017) Bone response to porous poly(methyl methacrylate) cement loaded with hydroxyapatite particles in a rabbit mandibular model. Tissue Eng Part C Methods 23(5):262–273. https://doi.org/10.1089/ten.TEC.2016.0521
Saha S, Pal S (1984) Mechanical properties of bone cement: a review. Wiley Online Libr 18:435–462
Saleh KJ, El Othmani MM, Tzeng TH, Mihalko WM, Chambers MC, Grupp TM (2016) Acrylic bone cement in total joint arthroplasty: a review. J Orthop Res 34(5):737–744. https://doi.org/10.1002/jor.23184
Shi M, Kretlow JD, Nguyen A, Young S, Scott Baggett L, Wong ME, Kasper FK, Mikos AG (2010) Antibiotic-releasing porous polymethylmethacrylate constructs for osseous space maintenance and infection control. Biomaterials 31(14):4146–4156. https://doi.org/10.1016/j.biomaterials.2010.01.112
Shi M, Kretlow JD, Spicer PP, Tabata Y, Demian N, Wong ME, Kasper FK, Mikos AG (2011) Antibiotic-releasing porous polymethylmethacrylate/gelatin/antibiotic constructs for craniofacial tissue engineering. J Control Release 152(1):196–205. https://doi.org/10.1016/j.jconrel.2011.01.029
Shinzato S, Nakamura T, Kokubo T, Kitamura Y (2001) Bioactive bone cement: effect of filler size on mechanical properties and osteoconductivity. J Biomed Mater Res 56(3):452–458. https://doi.org/10.1002/1097-4636(20010905)56:3<452::AID-JBM1115>3.0.CO;2-1
Spicer PP, Kretlow JD, Henslee AM, Shi M, Young S, Demian N, Jansen JA, Wong ME, Mikos AG, Kasper FK (2012) In situ formation of porous space maintainers in a composite tissue defect. J Biomed Mater Res A 100(4):827–833. https://doi.org/10.1002/jbm.a.34016
Spicer PP, Shah SR, Henslee AM, Watson BM, Kinard LA, Kretlow JD, Bevil K, Kattchee L, Bennett GN, Demian N, Mende K, Murray CK, Jansen JA, Wong ME, Mikos AG, Kasper FK (2013) Evaluation of antibiotic releasing porous polymethylmethacrylate space maintainers in an infected composite tissue defect model. Acta Biomater 9(11):8832–8839. https://doi.org/10.1016/j.actbio.2013.07.018
Stanczyk M, van Rietbergen B (2004) Thermal analysis of bone cement polymerisation at the cement-bone interface. J Biomech 37(12):1803–1810. https://doi.org/10.1016/j.jbiomech.2004.03.002
Sugino A, Ohtsuki C, Miyazaki T (2008) In vivo response of bioactive PMMA-based bone cement modified with alkoxysilane and calcium acetate. J Biomater Appl 23(3):213–228. https://doi.org/10.1177/0885328207081694
Sundfeldt M, Carlsson LV, Johansson CB, Thomsen P, Gretzer C (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77(2):177–197
Topoleski LD, Ducheyne P, Cuckler JM (1992) The fracture toughness of titanium-fiber-reinforced bone cement. J Biomed Mater Res 26(12):1599–1617. https://doi.org/10.1002/jbm.820261206
Torholm C, Lidgren L, Lindberg L, Kahlmeter G (1983) Total hip joint arthroplasty with gentamicin-impregnated cement: a clinical study of gentamicin excretion kinetics. Clin Orthop Relat Res 181:99–106
Torricelli P, Fini M, Giavaresi G, Botter R, Beruto D, Giardino R (2003) Biomimetic PMMA-based bone substitutes: a comparative in vitro evaluation of the effects of pulsed electromagnetic field exposure. J Biomed Mater Res A 64(1):182–188. https://doi.org/10.1002/jbm.a.10372
Vallo CI, Montemartini PE, Fanovich MA, Porto Lopez JM, Cuadrado TR (1999) Polymethylmethacrylate-based bone cement modified with hydroxyapatite. J Biomed Mater Res 48(2):150–158
van Mullem PJ, de Wijn JR (1988) Bone and soft connective tissue response to porous acrylic implants. A histokinetic study. J Craniomaxillofac Surg 16(3):99–109. https://doi.org/10.1016/S1010-5182(88)80029-5
van Mullem PJ, de Wijn JR, Vaandrager JM (1988) Porous acrylic cement: evaluation of a novel implant material. Ann Plast Surg 21(6):576–582. https://doi.org/10.1097/00000637-198812000-00015
van Mullem PJ, Vaandrager JM, Nicolai JP, de Wijn JR (1990) Implantation of porous acrylic cement in soft tissues: an animal and human biopsy histological study. Biomaterials 11(5):299–304. https://doi.org/10.1016/0142-9612(90)90105-Y
Verrier S, Hughes L, Alves A, Peroglio M, Alini M, Boger A (2012) Evaluation of the in vitro cell-material interactions and in vivo osteo-integration of a spinal acrylic bone cement. Eur Spine J 21(Suppl 6):S800–S809. https://doi.org/10.1007/s00586-011-1945-9
Wahlig H, Dingeldein E (1980) Antibiotics and bone cements. Experimental and clinical long-term observations. Acta Orthop Scand 51(1):49–56. https://doi.org/10.3109/17453678008990768
Wang H, Zhi W, Lu X, Li X, Duan K, Duan R, Mu Y, Weng J (2013a) Comparative studies on ectopic bone formation in porous hydroxyapatite scaffolds with complementary pore structures. Acta Biomater 9(9):8413–8421. https://doi.org/10.1016/j.actbio.2013.05.026
Wang J, Zhu C, Cheng T, Peng X, Zhang W, Qin H, Zhang X (2013b) A systematic review and meta-analysis of antibiotic-impregnated bone cement use in primary total hip or knee arthroplasty. PLoS One 8(12):e82745. https://doi.org/10.1371/journal.pone.0082745
Wang JS, Franzén H, Toksvig-Larsen S, Lidgren L (1995) Does vacuum mixing of bone cement affect heat generation? Analysis of four cement brands. J Appl Biomater 6(2):105–108
Wang L, Yoon DM, Spicer PP, Henslee AM, Scott DW, Wong ME, Kasper FK, Mikos AG (2013c) Characterization of porous polymethylmethacrylate space maintainers for craniofacial reconstruction. J Biomed Mater Res B Appl Biomater 101(5):813–825. https://doi.org/10.1002/jbm.b.32885
Wang M, Feng X, Wang T, Gao Y, Wang Y, Sa Y, Jiang T (2016) Synthesis and characterization of an injectable and self-curing poly (methyl methacrylate) cement functionalized with a biomimetic chitosan–poly (vinyl alcohol)/nano-sized hydroxyapatite/silver hydrogel. RSC Adv 6(65):60609–60619. https://doi.org/10.1039/c6ra08182g
Webb JC, Spencer RF (2007) The role of polymethylmethacrylate bone cement in modern orthopaedic surgery. J Bone Joint Surg Br 89(7):851–857. https://doi.org/10.1302/0301-620X.89B7.19148
Wyatt M, Hooper G, Frampton C, Rothwell A (2014) Survival outcomes of cemented compared to uncemented stems in primary total hip replacement. World J Orthop 5(5):591–596. https://doi.org/10.5312/wjo.v5.i5.591
Yi X, Wang Y, Lu H, Li C, Zhu T (2008) Augmentation of pedicle screw fixation strength using an injectable calcium sulfate cement: an in vivo study. Spine (Phila Pa 1976) 33(23):2503–2509. https://doi.org/10.1097/BRS.0b013e318184e750
Zhang J, Liu W, Schnitzler V, Tancret F, Bouler JM (2014) Calcium phosphate cements for bone substitution: chemistry, handling and mechanical properties. Acta Biomater 10(3):1035–1049. https://doi.org/10.1016/j.actbio.2013.11.001
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 81500887).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Sa, Y., Yang, F., Wang, Y., Wolke, J.G.C., Jansen, J.A. (2018). Modifications of Poly(Methyl Methacrylate) Cement for Application in Orthopedic Surgery. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_7
Download citation
DOI: https://doi.org/10.1007/978-981-13-0950-2_7
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-0949-6
Online ISBN: 978-981-13-0950-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)