Skip to main content

3D Bioprinting Technologies for Tissue Engineering Applications

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1078))

Abstract

Three-dimensional (3D) printing (rapid prototyping or additive manufacturing) technologies have received significant attention in various fields over the past several decades. Tissue engineering applications of 3D bioprinting, in particular, have attracted the attention of many researchers. 3D scaffolds produced by the 3D bioprinting of biomaterials (bio-inks) enable the regeneration and restoration of various tissues and organs. These 3D bioprinting techniques are useful for fabricating scaffolds for biomedical and regenerative medicine and tissue engineering applications, permitting rapid manufacture with high-precision and control over size, porosity, and shape. In this review, we introduce a variety of tissue engineering applications to create bones, vascular, skin, cartilage, and neural structures using a variety of 3D bioprinting techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahn D, Kweon JH, Lee S (2012) Quantification of surface roughness of parts processed by laminated object manufacturing. J Mater Proc Technol 212:339–346. https://doi.org/10.1016/j.jmatprotec.2011.08.013

    Article  Google Scholar 

  2. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408. https://doi.org/10.1615/CritRevBiomedEng.v40,i5.10

    Article  PubMed  PubMed Central  Google Scholar 

  3. Andreassi A, Bilenchi R, Biagioli M, D’Aniello C (2005) Classification and pathophysiology of skin grafts. Clin Dermatol 23:332–337. https://doi.org/10.1016/j.clindermatol.2004.07.024

    Article  PubMed  Google Scholar 

  4. Arkel RV, Amis A (2013) Basics of orthopaedic biomechanics. Orthopaedics and Trauma 27(2):67–75. https://doi.org/10.1016/J.mporth.2013.01.003

    Article  Google Scholar 

  5. Benam KH, Dauth S, Hassell B, Herland A, Jain A, Jang KJ, Karalis K, Kim HJ, MacQueen L, Mahmoodian R, Musah S, Torisawa Y, Meer AD, Villenave R, Yadid M, Parker KK, Ingber DE (2015) Engineered in vitro disease models. Annu Rev Pathol Mech Dis 10:195–262. https://doi.org/10.1146/annurev-pathol-012414-040418

    Article  CAS  Google Scholar 

  6. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY, Sboner A, Esgueva R, Pflueger D, Sougnez C, Onofrio R, Carter SL, Park K, Habegger L, Ambrogio L, Fennell T, Parkin M, Saksena G, Voet D, Ramos AH, Pugh TJ, Wilkinson J, Fisher S, Winckler W, Mahan S, Ardlie K, Baldwin J, Simons JW, Kitabayashi N, MacDonald TY, Kantoff PW, Chin L, Gabriel SB, Gerstein MB, Golub TR, Meyerson M, Tewari A, Lander ES, Getz G, Rubin MA, Garraway LA (2011) The genomic complexity of primary human prostate cancer. Nature 470:214–220. https://doi.org/10.1038/nature09744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modeling approaches: a critical review. Int J Adv Manuf Technol 83:389–405. https://doi.org/10.1007/s00170-015-7576-2

    Article  Google Scholar 

  8. Bildziukevich U, Rárová L, Šaman D, Wimmer Z (2018) Picolyl amides of betulinic acid as antitumor agents causing tumor cell apoptosis. Eur J Med Chem 145:41–50. https://doi.org/10.1016/j.ejmech.2017.12.096

    Article  CAS  PubMed  Google Scholar 

  9. Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30(10):546–554. https://doi.org/10.1016/j.tibtech.2012.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504. https://doi.org/10.1016/j.mattod.2013.11.017

    Article  CAS  Google Scholar 

  11. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:S467–S479. https://doi.org/10.1007/s00586-008-0745-3

    Article  Google Scholar 

  12. Church D, Elsayed S, Reid O, Winston B, Lindsay R (2006) Burn wound infections. Clin Microbiol Rev 19(2):403–434. https://doi.org/10.1128/CMR.19.2.403–434.2006

    Article  PubMed  PubMed Central  Google Scholar 

  13. Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4(4):415–436. https://doi.org/10.1016/0963-6897(95)00025-S

    Article  CAS  PubMed  Google Scholar 

  14. Corcione CE, Gervaso F, Scalera F, Montagna F, Maiullaro T, Sannino A, Maffezzoli A (2017) 3D printing of hydroxyapatite polymer-based composites for bone tissue engineering. J Polym Eng 37(8):741–746. https://doi.org/10.1515/polyeng-2016-0194

    Article  CAS  Google Scholar 

  15. Cubo N, Garcia M, Cañizo JF, Velasco D, Jorcano JL (2017) 3D biopriting of functional human skin: production and in vivo analysis. Biofabrication 9:015006. https://doi.org/10.1088/1758-5090/9/1/015006

    Article  CAS  Google Scholar 

  16. Cui X, boland T (2009) Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227. https://doi.org/10.1016/j.biomaterials.2009.07.056

    Article  CAS  PubMed  Google Scholar 

  17. Dong L, Wang SJ, Zhao XR, Zhu YF, Yu JK (2017) 3D-printed poly(ε-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Sci Rep 7:13412. https://doi.org/10.1038/s41598-017-13838-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, Richie JP, Langer R (2006) Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. PNAS 103(16):6315–6320. https://doi.org/10.1073/pnas.060175510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016a) 3-dimensional bioprinting for tissue engineering applications. Biomater. Res. 20:12. https://doi.org/10.1186/s40824-016-0058-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gu BK, Park SJ, Kim MS, Kang CM, Kim JI, Kim CH (2013) Fabrication of sonicated chitosan nanofiber mat with enlarged porosity for use as hemostatic materials. Carbohyd Polym 97:65–73. https://doi.org/10.1016/j.carbpol.2013.04.060

    Article  CAS  Google Scholar 

  21. Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, Wallace GG, Crook JM (2016b) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 5:1429–1438. https://doi.org/10.1002/adhm.201600095

    Article  CAS  PubMed  Google Scholar 

  22. Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35(24):6143–6156. https://doi.org/10.1016/j.biomaterials.2014.04.064

    Article  CAS  PubMed  Google Scholar 

  23. Haring AP, Sontheimer H, Johnson BN (2017) Microphysiological hman brain and neural systems-on-a-chip: potential alternatives to small animal models and emerging platforms for drug discovery and personalized medicine. Stem Cell Rev Rep 13:381–406. https://doi.org/10.1007/s12015-017-9738-0

    Article  CAS  PubMed  Google Scholar 

  24. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC, Choong PFM, Schuetz MA, Hutmacher DW (2013) Bone regeneration based on tissue engineering conceptions – a 21st century perspective. Bone Resear 1(3):216–248. https://doi.org/10.4248/BR201303002

    Article  CAS  Google Scholar 

  25. Holmers LR, Riddick JC (2014) Research summary of an additive manufacturing technology for the fabrication of 3D composites with tailored internal structure. J Minerals, Metals, Materials Society 66(2):270–274. https://doi.org/10.1007/s11837-013-0828-4

    Article  Google Scholar 

  26. Hou X, Liu S, Wang M, Wiraja C, Huang W, Chan P, Tan T, Xu C (2017) Layer-by-layer 3D constructs of fibroblasts in hydrogel for examining transdermal penetration capability of nanoparticles. SLAS Technol 22(4):447–453. https://doi.org/10.1177/2211068216655753

    Article  PubMed  Google Scholar 

  27. Howard D, Buttery LD, Shakesheff KM, Roberts SJ (2008) Tissue engineering: strategies, stem cells and scaffolds. J Anat 213:66–72. https://doi.org/10.1111/j.1469-7580.2008.00878.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57. https://doi.org/10.1016/j.biomaterials.2015.08.028

    Article  CAS  PubMed  Google Scholar 

  29. Huang TQ, Qu X, Liu J, Chen S (2014) 3D printing of biomimetic microstructures for cancer cell migration. Biomed Microdevices 16:127–132. https://doi.org/10.1007/s10544-013-9812-6

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hunziker EB (2001) Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil 10:432–463. https://doi.org/10.1053/joca.2002.0801

    Article  Google Scholar 

  31. Hutmacher DW (2000) Scaffold in tissue engineering bone and cartilage. Biomaterials 21:2529–2543. https://doi.org/10.1016/B978-008045154-1.50021-6

    Article  CAS  PubMed  Google Scholar 

  32. Ilkhanizadeh S, Teixeira AI, Hermanson O (2007) Inkjet printing of macromolecules on hydrogels to steer neural stem cell differentiation. Biomaterials 28:3936–3943. https://doi.org/10.1016/j.biomaterials.2007.05.01

    Article  CAS  PubMed  Google Scholar 

  33. Imamura Y, Mukohara T, Shimono Y, Funakoshi Y, Chayahara N, Toyoda M, Kiyota N, Takao S, Kono S, Nakatuura T, Minami H (2015) Comparison of 2D- and 3D-culture models as drug-testing platforms in breast cancer. Onc Rep 33:1837–1843. https://doi.org/10.3892/or.2015.3767

    Article  CAS  Google Scholar 

  34. Jean J, Garcia-Perez ME, Pouliot R (2011) Bioengineered skin: the self-assembly approach. J Tissue Sci Eng S5:001. https://doi.org/10.4172/2157-7552.S5-001

    Article  Google Scholar 

  35. Jia WJ, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68. https://doi.org/10.1016/j.biomaterials.2016.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jo J, Xiao Y, Sun AX, Cukuroglu E, Tran HD, Göke J, Tan ZY, Saw TY, Tan CP, Lokman H, Lee Y, Kim D, Ko HS, Kim SO, Park JH, Cho NJ, Hyde TM, Kleinman JE, Shin JH, Weinberger DR, Tan EK, Je HS, Ng HH (2016) Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19:248–257. https://doi.org/10.1016/j.stem.2016.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jung JP, Bhuiyan DB, Ogle BM (2016) Solid organ fabrication: comparison of decellularization to 3D bioprinting. Biomater. Res. 20:27. https://doi.org/10.1186/s40824-016-0074-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kato-Negishi M, Morimoto Y, Onoe H, Takeuchi S (2013) Millimeter-sized neural building blocks for 3D heterogeneous neural network assembly. Adv Healthc Mater 2:1564–1570. https://doi.org/10.1002/adhm.201300052

    Article  CAS  PubMed  Google Scholar 

  39. Kesti M, Eberhardt C, Pagliccia G, Kenkel D, Grande D, Boss A, Wong MZ (2015) Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Adv Funct Mater 25:7406–7417. https://doi.org/10.1002/adfm.201503423

    Article  Google Scholar 

  40. Kim JE, Kim SH, Jung Y (2016) Current status of three-dimensional printing inks for soft tissue regeneration. Tissue Eng. Regen. Med. 13(6):636–646. https://doi.org/10.1007/s13770-016-0125-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Knight E, Przyborski S (2015) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227:746–756. https://doi.org/10.1111/joa.12257

    Article  PubMed  Google Scholar 

  42. Koch L, Deiwick A, Schlie S, Michael S, Gruene M, Coger V, Zychlinski D, Schambach A, Reimers K, Vogy PM, Chichkov B (2012) Skin tissue generation by laser cell printing. Biotechnol Bioeng 109(7):1855–1863. https://doi.org/10.1002/bit.24455

    Article  CAS  PubMed  Google Scholar 

  43. Koch L, Kuhn S, Sorg H, Gruene M, Schlie S, Gaebel R, Polchow B, Reimers K, Stoelting S, Ma N, Vogt PM, Steinhoff G, Chichkov B (2010) Laser printing of skin cells and human stem cells. Tissue engineering: part C 16(5):847–185. https://doi.org/10.1089/ten.tec.2009.0397

    Article  CAS  Google Scholar 

  44. Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130. https://doi.org/10.1002/adma.201305506

    Article  CAS  PubMed  Google Scholar 

  45. Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. ClRP Annals 47(2):525–540. https://doi.org/10.1016/s0007-8506(7)63240-5

    Article  Google Scholar 

  46. Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas YP, Balogh LP, Khan MK, Baker JR (2005) Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res 65(12):5317–5324. https://doi.org/10.1158/0008-5472.CAN-04-3921

    Article  CAS  PubMed  Google Scholar 

  47. Kundu J, Shim JH, Jang J, Kim SW, Cho DE (2015) An additive manufacturing-based PCL–alginate–chondrocyte bioprinted scaffold for cartilage tissue engineering. J Tissue Eng Regen Med 9:1286–1297. https://doi.org/10.1002/term.1682

    Article  CAS  PubMed  Google Scholar 

  48. Land WS II, Zhang B, Ziegert J, Davies A (2015) In-situ metrology system for laser powder bed fusion additive process. Procedia Manuf 1:393–403. https://doi.org/10.1016/j.promfg.2015.09.047

    Article  Google Scholar 

  49. Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8:153–170. https://doi.org/10.1098/rsif.2010.0223

    Article  CAS  PubMed  Google Scholar 

  50. Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P (2014b) Design and fabrication of human skin by three-dimensional bioprinting. Tissue engineering: part C. 20(6):473–484. https://doi.org/10.1089/ten.tec.2013.0335

    Article  CAS  Google Scholar 

  51. Lee VK, Lanzi AM, Ngo H, Yoo SS, Vincent PA, Dai G (2014a) Generation of multi-scale vascular network system within 3D hydrogel using 3D bio-printing technology. Cell Mol Bioeng 7(3):460–472. https://doi.org/10.1007/s12195-014-0340-0

    Article  CAS  PubMed  Google Scholar 

  52. Lee YB, Polio S, Lee W, Dai G, Menon L (2010) Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol 223:645–652. https://doi.org/10.1016/j.expneurol.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  53. Leong MF, Toh JKC, Du C, Narayanan K, Lu HF, Lim TC, Wan ACA, Ying JY (2013) Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat Commun 4:2353. https://doi.org/10.1038/ncomms3353

    Article  PubMed  Google Scholar 

  54. Loss M, Wedler V, Künzi W, Meuli-Simmen C, Meyer VE (2000) Artifcial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 26:644–652

    Article  CAS  PubMed  Google Scholar 

  55. Ma H, Xue L (2015) Carbon nanotubes reinforced poly(L-lactide) scaffolds fabricated by thermally induced phase separation. Nanotechnology 26:025701. https://doi.org/10.1088/0957-4484/26/2/025701

    Article  CAS  PubMed  Google Scholar 

  56. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445:874–880. https://doi.org/10.1038/nature05664

    Article  CAS  PubMed  Google Scholar 

  57. Melchiorri AJ, Fisher JP (2015) Bioprinting of blood vessels, in Essentials 3D Biofabrication Translation. pp 337–350

    Chapter  Google Scholar 

  58. Metcalfe AD, Ferguson MWJ (2007) J R Soc Interface 4:413–437. https://doi.org/10.1098/rsif.2006.0179

    Article  CAS  PubMed  Google Scholar 

  59. Michael S, Sorg H, Peck CT, Koch L, Deiwick A, Chichkov B, Vogt PM, Reimers K (2013) Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PLoS One 8(3):e57741. https://doi.org/10.1371/journal.pone.0057741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mota RCAG, Silva EO, Lima FF, Menezes LR, Thiele ACS (2016) 3D printed scaffolds as a new perspective for bone tissue regeneration: literature review. Mater Sci App 7:430–452. https://doi.org/10.4236/msa.2016.78039

    Article  Google Scholar 

  61. Mravic M, Péault B, James AW (2014) Current trends in bone tissue engineering. BioMed Resear Inter 865270:1. https://doi.org/10.1155/2014/865270

    Article  Google Scholar 

  62. Ng WL, Wang S, Yeoung WY, Naing MW (2016) Skin bioprinting: impending reality or fantasy? Trends in Biotechnol 34(9):689–699. https://doi.org/10.1016/j.tibtech.2016.04.006

    Article  CAS  Google Scholar 

  63. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917. https://doi.org/10.1016/j.biomaterials.2009.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. O’Brien FJ (2011) Biomaterials and scaffolds for tissue engineering. Mater Today 14(3):88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

    Article  CAS  Google Scholar 

  65. Oh SH, Kang SG, Kim ES, Cho SH, Lee JH (2003) Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24:4011–4021. https://doi.org/10.1016/S0142-9612(03)00284-9

    Article  CAS  PubMed  Google Scholar 

  66. Owens CM, Marga F, Forgacs G, Heesch CM (2013) Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5:045007. https://doi.org/10.1088/1758-5082/5/4/045007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends in Biotechnol. 33(7):395–400. https://doi.org/10.1016/j.tibtech.2015.04.005

    Article  CAS  Google Scholar 

  68. Palanisamy N, Ateeq B, Sundaram SK, Pflueger D, Ramnarayanan K, Shankar S, Han B, Cao Q, Cao X, Suleman K, Sinha CK, Dhanasekaran SM, Chen YB, Esgueva R, Banerjee S, LaFargue CJ, Siddiqui J, Demichelis F, Moeller P, BismarTA KR, Fullen DR, Johnson TM, Greenson JK, Giordano TJ, Tan P, Tomlins SA, Varambally S, Rubin MA, Maher CA, Chinnaiyan AM (2010) Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 16(7):793–798. https://doi.org/10.1038/nm.2166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Pimentel CR, Ko SK, Caniglia C, Wolff A, Emnéus J, Keller SS, Dufva M (2017) Three-dimensional fabrication of thick and densely populated soft constructs with complex and actively perfused channel network. Acta Biomater 65:174–184. https://doi.org/10.1016/j.actbio.2017.10.047

    Article  CAS  Google Scholar 

  70. Quan Z, Wu A, Keefe M, Qin X, Yu J, Suhr J, Byun JH, Kim BS, Chou TW (2015) Additive manufacturing of multi-directional performs for composites: opportunities and challenges. Mater Today 18(9):503–512. https://doi.org/10.1016/j.mattod.2015.05.001

    Article  CAS  Google Scholar 

  71. Rath SN, Strobel LA, Arkudas A, Beier JP, Maier AK, Greil P, Horch RE, Kneser U (2012) Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions. J Cell Mol Med 16(10):2350–2361. https://doi.org/10.1111/j.1582-4934.2012.01545.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ren X, Wang F, Chen C, Gong X, Yin L, Yang L (2016) Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient. BMC Musculoskelet Disord 17:301. https://doi.org/10.1186/s12891-016-1130-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rengier F, Mehndiratta A, Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J CARS 5:335–341. https://doi.org/10.1007/s11548-010-0476-x

    Article  CAS  Google Scholar 

  74. Richards D, Jia J, Yost M, Markwald R, Mei Y (2016) 3D bioprinting for vascularized tissue fabrication. Annals Biomed Engin 45(1):132–147. https://doi.org/10.1007/s10439-016-1653-z

    Article  Google Scholar 

  75. Santos MI, Reis RL (2010) Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci 10:12–27. https://doi.org/10.1002/mabi.200900107

    Article  CAS  PubMed  Google Scholar 

  76. Sheridan R (2009) Closure of the excised burn wound: autografts, semipermanent skin substitutes, and permanent skin substitutes. Clin Plastic Surg 36:643–651. https://doi.org/10.1016/j.cps.2009.05.010

    Article  Google Scholar 

  77. Shevchenko RV, James SL, James SE (2010) A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 7:229–258. https://doi.org/10.1098/rsif.2009.0403

    Article  CAS  PubMed  Google Scholar 

  78. Shin M, Yoshimoto H, Vacanti JP (2004) In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng 10(1/2):33–41. https://doi.org/10.1089/107632704322791673

    Article  CAS  PubMed  Google Scholar 

  79. Shivalkar S, Singh S (2017) Solid freeform techniques application in bone tissue engineering for scaffold fabrication. Tissue Eng Regen Med 14(3):187–200. https://doi.org/10.1007/s13770-016-0002-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Singer AJ, Clark RAF (1999) Cutaneous wound healing. N Engl J Med 341(10):738–746. https://doi.org/10.1056/NEJM199909023411006

    Article  CAS  PubMed  Google Scholar 

  81. Snyder JE, Hamid Q, Wang C, Chang R, Emami K, Wu H, Sun W (2011) Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3:034112. https://doi.org/10.1088/1758-5082/3/3/034112

    Article  CAS  PubMed  Google Scholar 

  82. Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25. https://doi.org/10.1016/S1369-7021(08)70086-5

    Article  CAS  Google Scholar 

  83. Tang-Schomer MD, White JD, Tien LW, Schmitt LI, Valentin TM, Graziano DJ, Hopkins AM, Omenetto FG, Haydon PG, Kaplan DL (2014) Bioengineered functional brain-like cortical tissue. PNAS 111(38):13811–13816. https://doi.org/10.1073/pnas.1324214111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tian XF, Heng BC, Ge Z, Lu K, Rufaihah AJ, Fan VTW, Yeo JF, Cao T (2008) Comparison of osteogenesis of human embryonic stem cells within 2D and 3D culture systems. Scandinavian J Clin Lab Inves 68(1):58–67. https://doi.org/10.1080/00365510701466416

    Article  CAS  Google Scholar 

  85. Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J (2008) IFATS collection: using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 26:2713–2723. https://doi.org/10.1634/stemcells.2008-0031

    Article  PubMed  Google Scholar 

  86. Turner BN, Strong R, Gold SA (2014) A review of melt extrusion additive manufacturing processes: I. Process design and modeling. Rapid Prototyp J 20(3):192–204. https://doi.org/10.1108/RPJ-01-2013-0012

    Article  Google Scholar 

  87. Vig K, Chaudhari A, Tripathi S, Dixit S, Sahu R, Pillai S, Dennis VA, Singh SR (2017) Advances in skin regeneration using tissue engineering. Int J Mol Sci 18:789. https://doi.org/10.3390/ijms18040789

    Article  CAS  PubMed Central  Google Scholar 

  88. Wang F, Tang J, Li P, Si S, Yu H, Yang X, Tao J, Lv Q, Gu M, Yang H, Wang Z (2018) Chloroquine enhances the radiosensitivity of bladder cancer cells by inhibiting autophagy and activating apoptosis. Cell Physiol Biochem 45:54–66. https://doi.org/10.1159/000486222

    Article  CAS  PubMed  Google Scholar 

  89. Wang X, Ao Q, Tian X, Fan J, Wei Y, Hou W, Tong H, Bai S (2016) 3D bioprinting technologies for hard tissue and organ engineering. Materials 9:802. https://doi.org/10.3390/ma9100802

    Article  CAS  PubMed Central  Google Scholar 

  90. Wang X, Tolba E, Schröder HC, Neufurth M, Feng Q, Diehl-Seifert B, Müller WEG (2014) Effect of bioglass on growth and biomineralization of SaOS-2 cells in hydrogel after 3D cell bioprinting. PLoS One 9(11):e11497. https://doi.org/10.1371/journal.pone.0112497.

    Article  Google Scholar 

  91. Wong KV, Hernandez A (2012) A review of additive manufacturing. Inter Scholar Resear Net 208760:1. https://doi.org/10.5402/2012/208760

    Article  Google Scholar 

  92. Wu H, Lei P, Liu G, Zhang YS, Yang J, Zhang L, Xie J, Niu W, Liu H, Ruan J, Hu Y, Zhang C (2017a) Reconstruction of large-scale defects with a novel hybrid scaffold made from poly(L-lactic acid)/nanohydroxyapatite/alendronate-loaded chitosan microsphere: in vitro and in vivo studies. Sci Rep 7:359. https://doi.org/10.1038/s41598-017-00506-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu T, Yu S, Chen D, Wang Y (2017b) Bionic design, materials and performance of bone tissue scaffolds. Materials 10:1187. https://doi.org/10.3390/ma10101187

    Article  PubMed Central  Google Scholar 

  94. Wu W, DeConinck A, Lewis JA (2011) Omnidirectional printing of 3D microvascular networks. Adv Mater 23:H178–H183. https://doi.org/10.1002/adma.201004625

    Article  CAS  PubMed  Google Scholar 

  95. Xu T, Gregory CA, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T (2006) Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials 27:3580–3588. https://doi.org/10.1016/j.biomaterials.2006.01.048

    Article  CAS  PubMed  Google Scholar 

  96. Zhang D, Pekkanen-Mattila M, Shahsavani M, Falk A, Teixeira AI, Herland A (2014b) A 3D Alzheimer’s disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons. Biomaterials 35:1420–1428. https://doi.org/10.1016/j.biomaterials.2013.11.028

    Article  CAS  PubMed  Google Scholar 

  97. Zhang XD, Chen J, Min Y, Park GB, Shen X, Song SS, Sun YM, Wang H, Long W, Xie J, Gao K, Zhang L, Fan S, Fan F, Jeong U (2014a) Metabolizable Bi2Se3 nanoplates: biodistribution, toxicity, and uses for cancer radiation therapy and imaging. Adv Funct Mater 24:1718–1729. https://doi.org/10.1002/adfm.201302312

    Article  CAS  Google Scholar 

  98. Zhao Y, Yao R, Ouyang L, Ding H, Zhang T, Zhang K, Cheng S, Sun W (2014) Three-dimensional printing of Hela cells for cervical tumor model in vitro. Biofabrication 6:035001. https://doi.org/10.1088/1758-5082/6/3/035001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of KIRAMS, funded by Ministry of Science, ICT and Future Planning, South Korea (1711061997/50531-2018) and the Technology Innovation Program (10053595, Development of functionalized hydrogel scaffold based on medical grade biomaterials with 30% or less of molecular weight reduction) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ho Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gu, B.K., Choi, D.J., Park, S.J., Kim, YJ., Kim, CH. (2018). 3D Bioprinting Technologies for Tissue Engineering Applications. In: Chun, H., Park, C., Kwon, I., Khang, G. (eds) Cutting-Edge Enabling Technologies for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1078. Springer, Singapore. https://doi.org/10.1007/978-981-13-0950-2_2

Download citation

Publish with us

Policies and ethics