Skip to main content

Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Modeling

Part of the Advances in Experimental Medicine and Biology book series (AEMB,volume 1077)

Abstract

Biomaterials engineered to closely mimic morphology, architecture, and nanofeatures of naturally occurring in vivo extracellular matrices (ECM) have gained much interest in regenerative medicine and in vitro biomimetic platforms. Similarly, microphysiological systems (MPS), such as lab-chip, have drummed up momentum for recapitulating precise biomechanical conditions to model the in vivo microtissue environment. However, porosity of in vivo scaffolds regulating barrier and interface functions is generally absent in lab-chip systems, or otherwise introduces considerable cost, complexity, and an unrealistic uniformity in pore geometry. We address this by integrating electrospun nanofibrous porous scaffolds in MPS to develop the lab-on-a-brane (LOB) MPS for more effectively modeling transport, air-liquid interface, and tumor progression and for personalized medicine applications.

Keywords

  • Nanomedicine
  • nanotechnology
  • electrohydrodynamic
  • atomization
  • electrospinning
  • tissue engineering
  • microphysiological systems
  • disease model

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abbasi N, Hashemi SM, Salehi M, Jahani H, Mowla SJ, Soleimani M, Hosseinkhani H (2015) Influence of oriented nanofibrous PCL scaffolds on quantitative gene expression during neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A 104(1):155–164. https://doi.org/10.1002/jbm.a.35551

    CrossRef  CAS  PubMed  Google Scholar 

  2. Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38(6):963–991. https://doi.org/10.1016/j.progpolymsci.2013.02.001

    CrossRef  CAS  Google Scholar 

  3. Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A (2015) Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells Int. https://doi.org/10.1155/2015/167025

    CrossRef  Google Scholar 

  4. Ashammakhi N, Ndreu A, Piras A, Nikkola L, Sindelar T, Ylikauppila H et al (2006) Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechnol 6(9):2693–2711. https://doi.org/10.1166/jnn.2006.485

    CrossRef  CAS  PubMed  Google Scholar 

  5. Badylak SF, Freytes DO, Gilbert TW (2015) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 23(S):S17–S26. https://doi.org/10.1016/j.actbio.2015.07.016

    CrossRef  PubMed  Google Scholar 

  6. Bean AC, Tuan RS (2015) Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater 10(1):15018. https://doi.org/10.1088/1748-6041/10/1/015018

    CrossRef  CAS  Google Scholar 

  7. Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S (2014) Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Mater Sci Eng C Mater Biol Appl 44:268–277. https://doi.org/10.1016/j.msec.2014.08.018

    CrossRef  CAS  PubMed  Google Scholar 

  8. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004

    CrossRef  CAS  PubMed  Google Scholar 

  9. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772. https://doi.org/10.1038/nbt.2989

    CrossRef  CAS  PubMed  Google Scholar 

  10. Biazar E, Keshel SH, Sahebalzamani A, Hamidi M, Ebrahimi M (2014) The healing effect of unrestricted somatic stem cells loaded in nanofibrous poly hydroxybutyrate-co-hydroxyvalerate scaffold on full-thickness skin defects. J Biomater Tissue Eng 4(1):20–27. https://doi.org/10.1166/jbt.2014.1137

    CrossRef  CAS  Google Scholar 

  11. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074):353–357. https://doi.org/10.1038/nature04296

    CrossRef  CAS  PubMed  Google Scholar 

  12. Bleicher KH, Böhm H, Müller K, Alanine AI (2003) A guide to drug discovery: Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2(5):369. https://doi.org/10.1038/nrd1086

    CrossRef  CAS  PubMed  Google Scholar 

  13. Budhwani KI, Thomas V, Sethu P (2016) Lab-on-a-brane: nanofibrous polymer membranes to recreate organ–capillary interfaces. J Micromech Microeng 26(3):35013. https://doi.org/10.1088/0960-1317/26/3/035013

    CrossRef  CAS  Google Scholar 

  14. Cardwell RD, Kluge JA, Thayer PS, Guelcher SA, Dahlgren LA, Kaplan DL, Goldstein AS (2015) Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes. J Biomech Eng 137(7). https://doi.org/10.1115/1.4030404

    CrossRef  Google Scholar 

  15. Chan CW, Hussain I, Waugh DG, Lawrence J, Man HC (2014) Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy. Mater Sci Eng C Mater Biol Appl 42:254–263. https://doi.org/10.1016/j.msec.2014.05.022

    CrossRef  CAS  PubMed  Google Scholar 

  16. Chang JC, Fujita S, Tonami H, Kato K, Iwata H, Hsu SH (2013) Cell orientation and regulation of cell-cell communication in human mesenchymal stem cells on different patterns of electrospun fibers. Biomed Mater 8(5):55002. https://doi.org/10.1088/1748-6041/8/5/055002

    CrossRef  CAS  Google Scholar 

  17. Chen G, Dong C, Yang L, Lv Y (2015) 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. ACS Appl Mater Interfaces 7(29):15790–15802. https://doi.org/10.1021/acsami.5b02662

    CrossRef  CAS  PubMed  Google Scholar 

  18. Chowdhury S, Thomas V, Dean D, Catledge SA, Vohra YK (2005) Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. J Nanosci Nanotechnol 5(11):1816–1820

    CrossRef  CAS  PubMed  Google Scholar 

  19. Christopherson GT, Song H, Mao HQ (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4):556–564. https://doi.org/10.1016/j.biomaterials.2008.10.004

    CrossRef  CAS  PubMed  Google Scholar 

  20. Chuangchote S, Supaphol P (2006) Fabrication of aligned poly(vinyl alcohol) nanofibers by electrospinning. J Nanosci Nanotechnol 6(1):125–129(5). https://doi.org/10.1166/jnn.2006.043

    CrossRef  PubMed  Google Scholar 

  21. Cramariuc B, Cramariuc R, Scarlet R, Manea LR, Lupu IG, Cramariuc O (2013) Fiber diameter in electrospinning process. J Electrost 71(3):189–198. https://doi.org/10.1016/j.elstat.2012.12.018

    CrossRef  CAS  Google Scholar 

  22. Crowder SW, Liang Y, Rath R, Park AM, Maltais S, Pintauro PN et al (2013) Poly(epsilon-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine (London) 8(11):1763–1776. https://doi.org/10.2217/nnm.12.204

    CrossRef  CAS  Google Scholar 

  23. Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146. https://doi.org/10.1016/j.jconrel.2010.08.027

    CrossRef  CAS  PubMed  Google Scholar 

  24. DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185. https://doi.org/10.1016/S0167-6296(02)00126-1

    CrossRef  PubMed  Google Scholar 

  25. DiMasi JA, Hansen RW, Grabowski HG, Lasagna L (1991) Cost of innovation in the pharmaceutical industry. J Health Econ 10(2):107–142. https://doi.org/10.1016/0167-6296(91)90001-4

    CrossRef  CAS  PubMed  Google Scholar 

  26. Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964. https://doi.org/10.1126/science.287.5460.1960

    CrossRef  CAS  PubMed  Google Scholar 

  27. Egawa G, Nakamizo S, Natsuaki Y, Doi H, Miyachi Y, Kabashima K (2013) Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep 3:1932. https://doi.org/10.1038/srep01932

    CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887. https://doi.org/10.1083/jcb.200405004

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  29. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. https://doi.org/10.1016/j.cell.2006.06.044

    CrossRef  CAS  PubMed  Google Scholar 

  30. Fee T, Surianarayanan S, Downs C, Zhou Y, Berry J (2016) Nanofiber alignment regulates NIH3T3 cell orientation and cytoskeletal gene expression on electrospun PCL+gelatin nanofibers. PLoS ONE 11(5):1–12. https://doi.org/10.1371/journal.pone.0154806

    CrossRef  CAS  Google Scholar 

  31. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36. Retrieved from http://www.zyvex.com/nanotech/feynman.html

    Google Scholar 

  32. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200. https://doi.org/10.1242/jcs

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  33. Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of reproducibility in preclinical research. PLoS Biol 13(6):1–9. https://doi.org/10.1371/journal.pbio.1002165

    CrossRef  CAS  Google Scholar 

  34. Fujita S, Shimizu H, Suye S (2012) Control of differentiation of human mesenchymal stem cells by altering the geometry of nanofibers. J Nanotechnol 2012:1–9. https://doi.org/10.1155/2012/429890

    CrossRef  CAS  Google Scholar 

  35. Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101(4):937–949. https://doi.org/10.1002/jcb.21187

    CrossRef  CAS  PubMed  Google Scholar 

  36. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(D1):1100–1107. https://doi.org/10.1093/nar/gkr777

    CrossRef  CAS  Google Scholar 

  37. Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022

    CrossRef  CAS  PubMed  Google Scholar 

  38. Hoffmann A, Bredno J, Wendland M, Derugin N, Ohara P, Wintermark M (2011) High and low molecular weight fluorescein isothiocyanate (fitc)-dextrans to assess blood-brain barrier disruption: technical considerations. Transl Stroke Res 2(1):106–111. https://doi.org/10.1007/s12975-010-0049-x

    CrossRef  CAS  PubMed  Google Scholar 

  39. Hoyert DL (2012) 75 years of mortality in the United States, 1935-2010. NCHS Data Brief 88(88):1–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22617094

    Google Scholar 

  40. Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754. https://doi.org/10.1016/j.tcb.2011.09.005

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A et al (2013) Microfabrication of human organs-on-chips. Nat Protoc 8(11):2135–2157. https://doi.org/10.1038/nprot.2013.137

    CrossRef  CAS  PubMed  Google Scholar 

  42. Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA et al (2012a) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):159ra147. https://doi.org/10.1126/scitranslmed.3004249

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  43. Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012b) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164. https://doi.org/10.1039/c2lc40089h

    CrossRef  CAS  PubMed  Google Scholar 

  44. Iop L, Bonetti A, Naso F, Rizzo S, Cagnin S, Bianco R et al (2014) Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation. PLoS ONE 9(6). https://doi.org/10.1371/journal.pone.0099593

    CrossRef  PubMed  PubMed Central  Google Scholar 

  45. Jahani J, Kaviani S, Hassanpour-Ezatti M, Soleimani M, Kaviani Z, Zonoubi Z (2011) The effect of aligned and random electrospun fibrous scaffolds on rat mesenchymal stem cell proliferation. Cell J 14(1):31–38

    Google Scholar 

  46. Jeffords ME, Wu J, Shah M, Hong Y, Zhang G (2015) Tailoring material properties of cardiac matrix hydrogels to induce endothelial differentiation of human mesenchymal stem cells. ACS Appl Mater Interfaces 7(20):11053–11061. https://doi.org/10.1021/acsami.5b03195

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jose MV, Steinert BW, Thomas V, Dean DR, Abdalla M a, Price G, Janowski GM (2007) Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer 48(4):1096–1104. https://doi.org/10.1016/j.polymer.2006.12.023

    CrossRef  CAS  Google Scholar 

  48. Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7(6):513–520. https://doi.org/10.1016/j.ccr.2005.05.024

    CrossRef  CAS  PubMed  Google Scholar 

  49. Junka R, Valmikinathan CM, Kalyon DM, Yu X (2013) Laminin functionalized biomimetic nanofibers for nerve tissue engineering. J Biomater Tissue Eng 3(4):494–502. https://doi.org/10.1166/jbt.2013.1110

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S (2012) Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 23(9):95705. https://doi.org/10.1088/0957-4484/23/9/095705

    CrossRef  CAS  Google Scholar 

  51. Kamb A (2005) What’s wrong with our cancer models? Nat Rev Drug Des Discov 4(2):161–165. https://doi.org/10.1038/nrd1635

    CrossRef  CAS  Google Scholar 

  52. Kelland LR (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40(6):827–836. https://doi.org/10.1016/j.ejca.2003.11.028

    CrossRef  CAS  PubMed  Google Scholar 

  53. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  54. Khan M, Xu Y, Hua S, Johnson J, Belevych A, Janssen PML et al (2015) Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS ONE 10(5):e0126338. https://doi.org/10.1371/journal.pone.0126338

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26(1):120–126. https://doi.org/10.1038/nbt1361

    CrossRef  CAS  PubMed  Google Scholar 

  56. Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2015) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med. https://doi.org/10.1002/term.1978

    CrossRef  PubMed  Google Scholar 

  57. Kim CH, Jung YH, Kim HY, Lee DR (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14(1):59–65

    CrossRef  CAS  Google Scholar 

  58. Ko Y-M, Choi D-Y, Jung S-C, Kim B-H (2015) Characteristics of plasma treated electrospun polycaprolactone (PCL) nanofiber scaffold for bone tissue engineering. J Nanosci Nanotechnol 15(1):192–195. https://doi.org/10.1166/jnn.2015.8372

    CrossRef  CAS  PubMed  Google Scholar 

  59. Kocbek P, Pelipenko JAN, Kristl J, Rošic R, Kocbek P, Pelipenko JAN et al (2013) Nanofibers and their biomedical use. Acta Pharmaceutica (Zagreb, Croatia) 63(3):295–304. https://doi.org/10.2478/acph-2013-0024

    CrossRef  CAS  Google Scholar 

  60. Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137. https://doi.org/10.1016/S1359-6446(03)02933-7

    CrossRef  CAS  PubMed  Google Scholar 

  61. Kubinyi H (2003) Drug research: myths, hype and reality. Nat Rev Drug Discov 2(8):665–668. https://doi.org/10.1038/nrd1156

    CrossRef  CAS  PubMed  Google Scholar 

  62. Lee J, Abdeen AA, Huang TH, Kilian KA (2014) Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. J Mech Behav Biomed Mater 38:209–218. https://doi.org/10.1016/j.jmbbm.2014.01.009

    CrossRef  CAS  PubMed  Google Scholar 

  63. Leipzig ND, Shoichet MS (2009) The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30(36):6867–6878. https://doi.org/10.1016/j.biomaterials.2009.09.002

    CrossRef  CAS  PubMed  Google Scholar 

  64. Leite SB, Teixeira AP, Miranda JP, Tostões RM, Clemente JJ, Sousa MF et al (2011) Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: Improved in vitro models for toxicological applications. Toxicol In Vitro 25(4):825–832. https://doi.org/10.1016/j.tiv.2011.02.002

    CrossRef  CAS  PubMed  Google Scholar 

  65. Leung M, Cooper A, Jana S, Tsao CT, Petrie TA, Zhang M (2013) Nanofiber-based in vitro system for high myogenic differentiation of human embryonic stem cells. Biomacromolecules 14(12):4207–4216. https://doi.org/10.1021/bm4009843

    CrossRef  CAS  PubMed  Google Scholar 

  66. Li W, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2001) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):614–621. Retrieved from http://so.med.wanfangdata.com.cn/ViewHTML/PeriodicalPaper_JJ0210742604.aspx

    Google Scholar 

  67. Lim SH, Mao HQ (2009) Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 61(12):1084–1096. https://doi.org/10.1016/j.addr.2009.07.011

    CrossRef  CAS  PubMed  Google Scholar 

  68. Lindsley CW (2014) New statistics on the cost of new drug development and the trouble with CNS drugs. ACS Chem Neurosci 5(12):1142

    CrossRef  CAS  PubMed  Google Scholar 

  69. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64(SUPPL):4–17. https://doi.org/10.1016/j.addr.2012.09.019

    CrossRef  Google Scholar 

  70. Liu C, Zhu C, Li J, Zhou P, Chen M, Yang H, Li B (2015) The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res 3:15012. https://doi.org/10.1038/boneres.2015.12

    CrossRef  PubMed  PubMed Central  Google Scholar 

  71. Lorusso G, Rüegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103. https://doi.org/10.1007/s00418-008-0530-8

    CrossRef  CAS  PubMed  Google Scholar 

  72. Lotkov AI, Psakh’e SG, Meisner LL, Matveeva VA, Artem’eva LV, Meisner SN, Matveev AL (2012) The effect of chemical composition and roughness of titanium nickelide surface on proliferative properties of mesenchymal stem cells. Inorg Mater Appl Res 3(2):135–144. https://doi.org/10.1134/S2075113312020116

    CrossRef  Google Scholar 

  73. Ma C, Wang X-F (2008). In vitro assays for the extracellular matrix protein-regulated extravasation process. CSH Protocols, 2008, pdb.prot5034. https://doi.org/10.1101/pdb.prot5034

    CrossRef  Google Scholar 

  74. Ma H, Liu T, Qin J, Lin B (2010) Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device. Electrophoresis 31(10):1599–1605. https://doi.org/10.1002/elps.200900776

    CrossRef  CAS  PubMed  Google Scholar 

  75. Ma J, He X, Jabbari E (2011) Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers. Ann Biomed Eng 39(1):14–25. https://doi.org/10.1007/s10439-010-0106-3

    CrossRef  CAS  PubMed  Google Scholar 

  76. Ma X-J, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res: BCR 11(1):R7. https://doi.org/10.1186/bcr2222

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  77. Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10(3):188–195. https://doi.org/10.1038/nrd3368

    CrossRef  CAS  PubMed  Google Scholar 

  78. Macrí-Pellizzeri L, Pelacho B, Sancho A, Iglesias-García O, Simón-Yarza AM, Soriano-Navarro M et al (2015) Substrate stiffness and composition specifically direct differentiation of induced pluripotent stem cells. Tissue Eng A 21(9–10):1633–1641. https://doi.org/10.1089/ten.TEA.2014.0251

    CrossRef  Google Scholar 

  79. Mahairaki V, Lim SH, Christopherson GT, Xu L, Nasonkin I, Yu C et al (2011) Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro. Tissue Eng Part A 17(5–6):855–863. https://doi.org/10.1089/ten.TEA.2010.0377

    CrossRef  CAS  PubMed  Google Scholar 

  80. Maldonado M, Wong LY, Echeverria C, Ico G, Low K, Fujimoto T et al (2015) The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. Biomaterials 50:10–19. https://doi.org/10.1016/j.biomaterials.2015.01.037

    CrossRef  CAS  PubMed  Google Scholar 

  81. Mecham RP (ed) (2011) The extracellular matrix – an overview. Springer, St. Louis

    Google Scholar 

  82. Miao J, Miyauchi M, Simmons TJ, Dordick JS, Linhardt RJ (2010) Electrospinning of nanomaterials and applications in electronic components and devices. J Nanosci Nanotechnol 10(9):5507–5519. https://doi.org/10.1166/jnn.2010.3073

    CrossRef  CAS  PubMed  Google Scholar 

  83. National Institutes of Health (n.d.) Nanomedicine. Retrieved January 1, 2015, from https://commonfund.nih.gov/nanomedicine/overview

  84. National Nanotechnology Initiative (n.d.) Nanotechnology timeline. Retrieved January 1, 2015, from http://www.nano.gov/timeline

  85. Nezarati RM, Eifert MB, Dempsey DK, Cosgriff-Hernandez E (2015) Electrospun vascular grafts with improved compliance matching to native vessels. J Biomed Mater Res B Appl Biomater 103(2):313–323. https://doi.org/10.1002/jbm.b.33201

    CrossRef  CAS  PubMed  Google Scholar 

  86. Nishikawa M, Kojima N, Yamamoto T, Fujii T, Sakai Y (2008) An advanced in vitro liver tissue model by combination of on-site oxygenation and double-layer coculture with fibroblasts. AATEX 14(Special Issue):659–663

    Google Scholar 

  87. Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E et al (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen Off J Soc Biomol Screen 6(6):429–440. https://doi.org/10.1177/108705710100600609

    CrossRef  CAS  Google Scholar 

  88. Park JH, Chung BG, Lee WG, Kim J, Brigham MD, Shim J et al (2010) Microporous cell-laden hydrogels for engineered tissue constructs. Biotechnol Bioeng 106(1):138–148

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials 32(16):3921–3930. https://doi.org/10.1016/j.biomaterials.2011.02.019

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  90. Persidis A (1998) High-throughput screening. Advances in robotics and miniturization continue to accelerate drug lead identification. Nat Biotechnol 16(5):488–489. https://doi.org/10.1038/nbt0598-488

    CrossRef  CAS  PubMed  Google Scholar 

  91. Phipps MC, Clem WC, Catledge S a, Xu Y, Hennessy KM, Thomas V et al (2011) Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS ONE 6(2):1–8. https://doi.org/10.1371/journal.pone.0016813

    CrossRef  CAS  Google Scholar 

  92. Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013:1–22. https://doi.org/10.1155/2013/789289

    CrossRef  CAS  Google Scholar 

  93. Prabhakaran MP, Mobarakeh LG, Kai D, Karbalaie K, Nasr-Esfahani MH, Ramakrishna S (2014) Differentiation of embryonic stem cells to cardiomyocytes on electrospun nanofibrous substrates. Jf Biomed Mater Res Part B Appl Biomat 102(3):447–454. https://doi.org/10.1002/jbm.b.33022

    CrossRef  CAS  Google Scholar 

  94. Press Association (2014). Why tests on mice may be of little use. The Telegraph, pp 3–5. Retrieved from http://www.telegraph.co.uk/science/science-news/11241310/Why-tests-on-mice-may-be-of-little-use.html

  95. Ramesh Kumar P, Khan N, Vivekanandhan S, Satyanarayana N, Mohanty AK, Misra M (2012) Nanofibers: effective generation by electrospinning and their applications. J Nanosci Nanotechnol 12(1):1–25. https://doi.org/10.1166/jnn.2012.5111

    CrossRef  CAS  PubMed  Google Scholar 

  96. Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2013) Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J Cardiol 5(3):28–41. https://doi.org/10.4330/wjc.v5.i3.28

    CrossRef  PubMed  PubMed Central  Google Scholar 

  97. Rederstorff E, Rethore G, Weiss P, Sourice S, Beck-Cormier S, Mathieu E et al (2015) Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2018

    CrossRef  PubMed  Google Scholar 

  98. Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56(24):5754–5757. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8971187%5Cn, http://cancerres.aacrjournals.org/content/56/24/5754.full.pdf

    CAS  PubMed  Google Scholar 

  99. Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140. https://doi.org/10.1016/j.ydbio.2009.10.026

    CrossRef  CAS  PubMed  Google Scholar 

  100. Safaeijavan R, Soleimani M, Divsalar A, Eidi A, Ardeshirylajimi A (2014) Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells. Iran J Basic Med Sci 17(11):903–911

    PubMed  PubMed Central  Google Scholar 

  101. Salaam AD, Mishra M, Nyairo E, Dean D (2014) Electrospun polyvinyl alcohol/nanodiamond composite scaffolds: morphological, structural, and biological analysis. J Biomater Tissue Eng 4(3):173–180. https://doi.org/10.1166/jbt.2014.1152

    CrossRef  CAS  Google Scholar 

  102. Schindler C, Williams BL, Patel HN, Thomas V, Dean DR (2013) Electrospun polycaprolactone/polyglyconate blends: miscibility, mechanical behavior, and degradation. Polymer (United Kingdom) 54(25):6824–6833. https://doi.org/10.1016/j.polymer.2013.10.025

    CrossRef  CAS  Google Scholar 

  103. Sheets K, Wang J, Meehan S, Sharma P, Ng C, Khan M et al (2013) Cell-fiber interactions on aligned and suspended nanofiber scaffolds. J Biomater Tissue Eng 3(4):355–368. https://doi.org/10.1166/jbt.2013.1105

    CrossRef  CAS  Google Scholar 

  104. Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B: Biointerfaces 134:346–354. https://doi.org/10.1016/j.colsurfb.2015.07.019

    CrossRef  CAS  PubMed  Google Scholar 

  105. Sweeney SM (2014) AACR cancer progress report 2015. Am Assoc Cancer Res 126. https://doi.org/10.1158/1078-0432.CCR-12-2891

  106. Taetle R, Honeysett JM, Rosen F, Shoemaker R (1986) Use of nude mouse xenografts as preclinical drug screens: Further studies onin vitro growth of xenograft tumor colony-forming cells. Cancer 58(9):1969–1978. https://doi.org/10.1002/1097-0142(19861101)58:9<1969::AID-CNCR2820580903>3.0.CO;2-4

    CrossRef  CAS  PubMed  Google Scholar 

  107. Takimoto CH (2001) Why drugs fail: of mice and men revisited. Clin Cancer Res 7(2):229–230

    CAS  PubMed  Google Scholar 

  108. Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31(5):669–687. https://doi.org/10.1016/j.biotechadv.2012.11.007

    CrossRef  CAS  PubMed  Google Scholar 

  109. Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK (2007a) Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 8(2):631–637. https://doi.org/10.1021/bm060879w

    CrossRef  CAS  PubMed  Google Scholar 

  110. Thomas V, Dean DR, Vohra YK (2006a) Nanostructured biomaterials for regenerative medicine. Curr Nanosci 2(3):155–177. https://doi.org/10.1007/978-1-4614-1080-5

    CrossRef  CAS  Google Scholar 

  111. Thomas V, Jagani S, Johnson K, Jose MV, Dean DR, Vohra YK, Nyairo E (2006b) Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 6(2):487–493

    CrossRef  CAS  PubMed  Google Scholar 

  112. Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK (2006c) Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Scie Polym Edn 17(9):969–984. https://doi.org/10.1163/156856206778366022

    CrossRef  CAS  Google Scholar 

  113. Thomas V, Zhang X, Catledge SA, Vohra YK (2007b) Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater (Bristol, England) 2(4):224–232. https://doi.org/10.1088/1748-6041/2/4/004

    CrossRef  CAS  Google Scholar 

  114. Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922. https://doi.org/10.1016/j.polymer.2007.09.017

    CrossRef  CAS  Google Scholar 

  115. Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99(19):1441–1454. https://doi.org/10.1093/jnci/djm135

    CrossRef  CAS  PubMed  Google Scholar 

  116. Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6(1). https://doi.org/10.1371/journal.pone.0015978

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  117. Tucker N, Stanger JJ, Staiger MP, Razzaw H, Hofman K (2012) The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fibers Fabrics 7:63–73

    CAS  Google Scholar 

  118. Tyagi P, Catledge SA, Stanishevsky A, Thomas V, Vohra YK (2009) Nanomechanical properties of electrospun composite scaffolds based on polycaprolactone and hydroxyapatite. J Nanosci Nanotechnol 9(8):4839–4845

    CrossRef  CAS  PubMed  Google Scholar 

  119. Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–1223. https://doi.org/10.1038/nm.1971

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  120. van der Meer AD, van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol (Camb) 4(5):461–470. https://doi.org/10.1039/c2ib00176d

    CrossRef  CAS  Google Scholar 

  121. van Manen EH, Zhang W, Walboomers XF, Vazquez B, Yang F, Ji W et al (2014) The influence of electrospun fibre scaffold orientation and nano-hydroxyapatite content on the development of tooth bud stem cells in vitro. Odontology 102(1):14–21. https://doi.org/10.1007/s10266-012-0087-9

    CrossRef  CAS  PubMed  Google Scholar 

  122. Wagner I, Materne E-M, Brincker S, Süssbier U, Frädrich C, Busek M et al (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18):3538–3547. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23648632

    CrossRef  CAS  PubMed  Google Scholar 

  123. Wang J, Ye R, Wei Y, Wang H, Xu X, Zhang F et al (2012) The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J Biomed Mater Res A 100(3):632–645. https://doi.org/10.1002/jbm.a.33291

    CrossRef  CAS  PubMed  Google Scholar 

  124. Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K et al (2014) The effect of thick fibers and large pores of electrospun poly(epsilon-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35(22):5700–5710. https://doi.org/10.1016/j.biomaterials.2014.03.078

    CrossRef  CAS  PubMed  Google Scholar 

  125. Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009. https://doi.org/10.1038/nature06526

    CrossRef  CAS  PubMed  Google Scholar 

  126. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912. https://doi.org/10.1038/onc.2008.271

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wise JK, Yarin AL, Megaridis CM, Cho M (2009) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds - engineering the superficial zone of articular cartilage. Tissue Eng Part A 15(4):10

    CrossRef  Google Scholar 

  128. Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672. https://doi.org/10.1093/nar/gkj067

    CrossRef  CAS  PubMed  Google Scholar 

  129. Yang L, Pang Y, Moses HL (2010) TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227. https://doi.org/10.1016/j.it.2010.04.002

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ye K, Wang X, Cao L, Li S, Li Z, Yu L, Ding J (2015) Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett 15(7):4720–4729. https://doi.org/10.1021/acs.nanolett.5b01619

    CrossRef  CAS  PubMed  Google Scholar 

  131. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34. https://doi.org/10.1002/cm.20041

    CrossRef  PubMed  Google Scholar 

  132. Young DA, Choi YS, Engler AJ, Christman KL (2013) Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34(34):8581–8588. https://doi.org/10.1016/j.biomaterials.2013.07.103

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  133. Youngstrom DW, Barrett JG, Jose RR, Kaplan DL (2013) Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS ONE 8(5). https://doi.org/10.1371/journal.pone.0064151

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  134. Zanatta G, Steffens D, Braghirolli DI, Fernandes RA, Netto CA, Pranke P (2012) Viability of mesenchymal stem cells during electrospinning. Braz J Med Biol Res 45(2):125–130. https://doi.org/10.1590/s0100-879x2011007500163

    CrossRef  CAS  PubMed  Google Scholar 

  135. Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10(1):1–6. https://doi.org/10.1103/PhysRev.10.1

    CrossRef  Google Scholar 

  136. Zhao W, Li X, Liu X, Zhang N, Wen X (2014) Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 40:316–323. https://doi.org/10.1016/j.msec.2014.03.048

    CrossRef  CAS  PubMed  Google Scholar 

  137. Zheng W, Spencer RH, Kiss L (2004) High throughput assay technologies for ion channel drug discovery. Assay Drug Dev Technol 2(5):543–552. https://doi.org/10.1089/adt.2004.2.543

    CrossRef  CAS  PubMed  Google Scholar 

  138. Zhu B, Li W, Lewis RV, Segre CU, Wang R (2015) E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation. Biomacromolecules 16(1):202–213. https://doi.org/10.1021/bm501403f

    CrossRef  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

In addition to elixir international® and the National Science Foundation (NSF EPS 1158862, DMR 1460392 REU), for their generous support, we thank P. Sethu, M.N. Saleh, S. Pillay, C.A. Monroe, U.K. Vaidya, M.L. Weaver, HW. Jun, G. Walcott, H. Budhwani, J.R. Richter, K.F. Goliwas, A. Gangrade, A.T. Wood, H. Zhang, and J. Rogers for their insight and expertise. We would also like to acknowledge UAB Comprehensive Cancer Center (CCC), UAB Scanning Electron Microscope Lab, and Research Machine Shop for use of facilities and equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinoy Thomas .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

ASC

Adult stem cells

AACR

American Association for Cancer Research

CVD

Cardiovascular diseases

EC

Endothelial cells

ECM

Extracellular matrix (or matrices)

EHDA

Electrohydrodynamic atomization

ESC

Embryonic stem cells

FDA

Food and Drug Administration

FITC

Fluorescein isothiocyanate

HTS

High-throughput screening

HMSC

Human mesenchymal stem cells

iPSC

Induced pluripotent stem cells

LOB

Lab-on-a-brane

MSC

Mesenchymal stem cells

nHA

Nanohydroxyapatite

NIH

National Institutes of Health

NSC

Neural stem cells

NSF

National Science Foundation

NSPC

Neural stem/progenitor cells

pAA

Polyacrylamide

PCL

Poly(Ɛ-caprolactone)

PDMS

Polydimethyl siloxane

PET

Polyethylene terephthalate

PG

Proteoglycans

PLGA

Polylactide-co-glycolide

SC

Stem cells

SEM

Scanning electron microscopy

SMC

Smooth muscle cells

UV

Ultraviolet

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Budhwani, K.I., Oliver, P.G., Buchsbaum, D.J., Thomas, V. (2018). Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Modeling. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_6

Download citation