Abstract
Biomaterials engineered to closely mimic morphology, architecture, and nanofeatures of naturally occurring in vivo extracellular matrices (ECM) have gained much interest in regenerative medicine and in vitro biomimetic platforms. Similarly, microphysiological systems (MPS), such as lab-chip, have drummed up momentum for recapitulating precise biomechanical conditions to model the in vivo microtissue environment. However, porosity of in vivo scaffolds regulating barrier and interface functions is generally absent in lab-chip systems, or otherwise introduces considerable cost, complexity, and an unrealistic uniformity in pore geometry. We address this by integrating electrospun nanofibrous porous scaffolds in MPS to develop the lab-on-a-brane (LOB) MPS for more effectively modeling transport, air-liquid interface, and tumor progression and for personalized medicine applications.
Keywords
- Nanomedicine
- nanotechnology
- electrohydrodynamic
- atomization
- electrospinning
- tissue engineering
- microphysiological systems
- disease model
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Abbasi N, Hashemi SM, Salehi M, Jahani H, Mowla SJ, Soleimani M, Hosseinkhani H (2015) Influence of oriented nanofibrous PCL scaffolds on quantitative gene expression during neural differentiation of mouse embryonic stem cells. J Biomed Mater Res A 104(1):155–164. https://doi.org/10.1002/jbm.a.35551
Agarwal S, Greiner A, Wendorff JH (2013) Functional materials by electrospinning of polymers. Prog Polym Sci 38(6):963–991. https://doi.org/10.1016/j.progpolymsci.2013.02.001
Akhmanova M, Osidak E, Domogatsky S, Rodin S, Domogatskaya A (2015) Physical, spatial, and molecular aspects of extracellular matrix of in vivo niches and artificial scaffolds relevant to stem cells research. Stem Cells Int. https://doi.org/10.1155/2015/167025
Ashammakhi N, Ndreu A, Piras A, Nikkola L, Sindelar T, Ylikauppila H et al (2006) Biodegradable nanomats produced by electrospinning: expanding multifunctionality and potential for tissue engineering. J Nanosci Nanotechnol 6(9):2693–2711. https://doi.org/10.1166/jnn.2006.485
Badylak SF, Freytes DO, Gilbert TW (2015) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 23(S):S17–S26. https://doi.org/10.1016/j.actbio.2015.07.016
Bean AC, Tuan RS (2015) Fiber diameter and seeding density influence chondrogenic differentiation of mesenchymal stem cells seeded on electrospun poly(ε-caprolactone) scaffolds. Biomed Mater 10(1):15018. https://doi.org/10.1088/1748-6041/10/1/015018
Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S (2014) Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Mater Sci Eng C Mater Biol Appl 44:268–277. https://doi.org/10.1016/j.msec.2014.08.018
Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004
Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32(8):760–772. https://doi.org/10.1038/nbt.2989
Biazar E, Keshel SH, Sahebalzamani A, Hamidi M, Ebrahimi M (2014) The healing effect of unrestricted somatic stem cells loaded in nanofibrous poly hydroxybutyrate-co-hydroxyvalerate scaffold on full-thickness skin defects. J Biomater Tissue Eng 4(1):20–27. https://doi.org/10.1166/jbt.2014.1137
Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074):353–357. https://doi.org/10.1038/nature04296
Bleicher KH, Böhm H, Müller K, Alanine AI (2003) A guide to drug discovery: Hit and lead generation: beyond high-throughput screening. Nat Rev Drug Discov 2(5):369. https://doi.org/10.1038/nrd1086
Budhwani KI, Thomas V, Sethu P (2016) Lab-on-a-brane: nanofibrous polymer membranes to recreate organ–capillary interfaces. J Micromech Microeng 26(3):35013. https://doi.org/10.1088/0960-1317/26/3/035013
Cardwell RD, Kluge JA, Thayer PS, Guelcher SA, Dahlgren LA, Kaplan DL, Goldstein AS (2015) Static and cyclic mechanical loading of mesenchymal stem cells on elastomeric, electrospun polyurethane meshes. J Biomech Eng 137(7). https://doi.org/10.1115/1.4030404
Chan CW, Hussain I, Waugh DG, Lawrence J, Man HC (2014) Effect of laser treatment on the attachment and viability of mesenchymal stem cell responses on shape memory NiTi alloy. Mater Sci Eng C Mater Biol Appl 42:254–263. https://doi.org/10.1016/j.msec.2014.05.022
Chang JC, Fujita S, Tonami H, Kato K, Iwata H, Hsu SH (2013) Cell orientation and regulation of cell-cell communication in human mesenchymal stem cells on different patterns of electrospun fibers. Biomed Mater 8(5):55002. https://doi.org/10.1088/1748-6041/8/5/055002
Chen G, Dong C, Yang L, Lv Y (2015) 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. ACS Appl Mater Interfaces 7(29):15790–15802. https://doi.org/10.1021/acsami.5b02662
Chowdhury S, Thomas V, Dean D, Catledge SA, Vohra YK (2005) Nanoindentation on porous bioceramic scaffolds for bone tissue engineering. J Nanosci Nanotechnol 5(11):1816–1820
Christopherson GT, Song H, Mao HQ (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4):556–564. https://doi.org/10.1016/j.biomaterials.2008.10.004
Chuangchote S, Supaphol P (2006) Fabrication of aligned poly(vinyl alcohol) nanofibers by electrospinning. J Nanosci Nanotechnol 6(1):125–129(5). https://doi.org/10.1166/jnn.2006.043
Cramariuc B, Cramariuc R, Scarlet R, Manea LR, Lupu IG, Cramariuc O (2013) Fiber diameter in electrospinning process. J Electrost 71(3):189–198. https://doi.org/10.1016/j.elstat.2012.12.018
Crowder SW, Liang Y, Rath R, Park AM, Maltais S, Pintauro PN et al (2013) Poly(epsilon-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine (London) 8(11):1763–1776. https://doi.org/10.2217/nnm.12.204
Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release 148(2):135–146. https://doi.org/10.1016/j.jconrel.2010.08.027
DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22(2):151–185. https://doi.org/10.1016/S0167-6296(02)00126-1
DiMasi JA, Hansen RW, Grabowski HG, Lasagna L (1991) Cost of innovation in the pharmaceutical industry. J Health Econ 10(2):107–142. https://doi.org/10.1016/0167-6296(91)90001-4
Drews J (2000) Drug discovery: a historical perspective. Science 287(5460):1960–1964. https://doi.org/10.1126/science.287.5460.1960
Egawa G, Nakamizo S, Natsuaki Y, Doi H, Miyachi Y, Kabashima K (2013) Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci Rep 3:1932. https://doi.org/10.1038/srep01932
Engler AJ, Griffin MA, Sen S, Bonnemann CG, Sweeney HL, Discher DE (2004) Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. J Cell Biol 166(6):877–887. https://doi.org/10.1083/jcb.200405004
Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. https://doi.org/10.1016/j.cell.2006.06.044
Fee T, Surianarayanan S, Downs C, Zhou Y, Berry J (2016) Nanofiber alignment regulates NIH3T3 cell orientation and cytoskeletal gene expression on electrospun PCL+gelatin nanofibers. PLoS ONE 11(5):1–12. https://doi.org/10.1371/journal.pone.0154806
Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36. Retrieved from http://www.zyvex.com/nanotech/feynman.html
Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. J Cell Sci 123:4195–4200. https://doi.org/10.1242/jcs
Freedman LP, Cockburn IM, Simcoe TS (2015) The economics of reproducibility in preclinical research. PLoS Biol 13(6):1–9. https://doi.org/10.1371/journal.pbio.1002165
Fujita S, Shimizu H, Suye S (2012) Control of differentiation of human mesenchymal stem cells by altering the geometry of nanofibers. J Nanotechnol 2012:1–9. https://doi.org/10.1155/2012/429890
Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101(4):937–949. https://doi.org/10.1002/jcb.21187
Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(D1):1100–1107. https://doi.org/10.1093/nar/gkr777
Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022
Hoffmann A, Bredno J, Wendland M, Derugin N, Ohara P, Wintermark M (2011) High and low molecular weight fluorescein isothiocyanate (fitc)-dextrans to assess blood-brain barrier disruption: technical considerations. Transl Stroke Res 2(1):106–111. https://doi.org/10.1007/s12975-010-0049-x
Hoyert DL (2012) 75 years of mortality in the United States, 1935-2010. NCHS Data Brief 88(88):1–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22617094
Huh D, Hamilton GA, Ingber DE (2011) From 3D cell culture to organs-on-chips. Trends Cell Biol 21(12):745–754. https://doi.org/10.1016/j.tcb.2011.09.005
Huh D, Kim HJ, Fraser JP, Shea DE, Khan M, Bahinski A et al (2013) Microfabrication of human organs-on-chips. Nat Protoc 8(11):2135–2157. https://doi.org/10.1038/nprot.2013.137
Huh D, Leslie DC, Matthews BD, Fraser JP, Jurek S, Hamilton GA et al (2012a) A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4(159):159ra147. https://doi.org/10.1126/scitranslmed.3004249
Huh D, Torisawa YS, Hamilton GA, Kim HJ, Ingber DE (2012b) Microengineered physiological biomimicry: organs-on-chips. Lab Chip 12(12):2156–2164. https://doi.org/10.1039/c2lc40089h
Iop L, Bonetti A, Naso F, Rizzo S, Cagnin S, Bianco R et al (2014) Decellularized allogeneic heart valves demonstrate self-regeneration potential after a long-term preclinical evaluation. PLoS ONE 9(6). https://doi.org/10.1371/journal.pone.0099593
Jahani J, Kaviani S, Hassanpour-Ezatti M, Soleimani M, Kaviani Z, Zonoubi Z (2011) The effect of aligned and random electrospun fibrous scaffolds on rat mesenchymal stem cell proliferation. Cell J 14(1):31–38
Jeffords ME, Wu J, Shah M, Hong Y, Zhang G (2015) Tailoring material properties of cardiac matrix hydrogels to induce endothelial differentiation of human mesenchymal stem cells. ACS Appl Mater Interfaces 7(20):11053–11061. https://doi.org/10.1021/acsami.5b03195
Jose MV, Steinert BW, Thomas V, Dean DR, Abdalla M a, Price G, Janowski GM (2007) Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer 48(4):1096–1104. https://doi.org/10.1016/j.polymer.2006.12.023
Joyce JA (2005) Therapeutic targeting of the tumor microenvironment. Cancer Cell 7(6):513–520. https://doi.org/10.1016/j.ccr.2005.05.024
Junka R, Valmikinathan CM, Kalyon DM, Yu X (2013) Laminin functionalized biomimetic nanofibers for nerve tissue engineering. J Biomater Tissue Eng 3(4):494–502. https://doi.org/10.1166/jbt.2013.1110
Kai D, Prabhakaran MP, Stahl B, Eblenkamp M, Wintermantel E, Ramakrishna S (2012) Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 23(9):95705. https://doi.org/10.1088/0957-4484/23/9/095705
Kamb A (2005) What’s wrong with our cancer models? Nat Rev Drug Des Discov 4(2):161–165. https://doi.org/10.1038/nrd1635
Kelland LR (2004) “Of mice and men”: values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 40(6):827–836. https://doi.org/10.1016/j.ejca.2003.11.028
Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67. https://doi.org/10.1016/j.cell.2010.03.015
Khan M, Xu Y, Hua S, Johnson J, Belevych A, Janssen PML et al (2015) Evaluation of changes in morphology and function of human induced pluripotent stem cell derived cardiomyocytes (HiPSC-CMs) cultured on an aligned-nanofiber cardiac patch. PLoS ONE 10(5):e0126338. https://doi.org/10.1371/journal.pone.0126338
Khetani SR, Bhatia SN (2008) Microscale culture of human liver cells for drug development. Nat Biotechnol 26(1):120–126. https://doi.org/10.1038/nbt1361
Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, Ramakrishna S (2015) A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med. https://doi.org/10.1002/term.1978
Kim CH, Jung YH, Kim HY, Lee DR (2006) Effect of collector temperature on the porous structure of electrospun fibers. Macromol Res 14(1):59–65
Ko Y-M, Choi D-Y, Jung S-C, Kim B-H (2015) Characteristics of plasma treated electrospun polycaprolactone (PCL) nanofiber scaffold for bone tissue engineering. J Nanosci Nanotechnol 15(1):192–195. https://doi.org/10.1166/jnn.2015.8372
Kocbek P, Pelipenko JAN, Kristl J, Rošic R, Kocbek P, Pelipenko JAN et al (2013) Nanofibers and their biomedical use. Acta Pharmaceutica (Zagreb, Croatia) 63(3):295–304. https://doi.org/10.2478/acph-2013-0024
Kolb HC, Sharpless KB (2003) The growing impact of click chemistry on drug discovery. Drug Discov Today 8(24):1128–1137. https://doi.org/10.1016/S1359-6446(03)02933-7
Kubinyi H (2003) Drug research: myths, hype and reality. Nat Rev Drug Discov 2(8):665–668. https://doi.org/10.1038/nrd1156
Lee J, Abdeen AA, Huang TH, Kilian KA (2014) Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells. J Mech Behav Biomed Mater 38:209–218. https://doi.org/10.1016/j.jmbbm.2014.01.009
Leipzig ND, Shoichet MS (2009) The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30(36):6867–6878. https://doi.org/10.1016/j.biomaterials.2009.09.002
Leite SB, Teixeira AP, Miranda JP, Tostões RM, Clemente JJ, Sousa MF et al (2011) Merging bioreactor technology with 3D hepatocyte-fibroblast culturing approaches: Improved in vitro models for toxicological applications. Toxicol In Vitro 25(4):825–832. https://doi.org/10.1016/j.tiv.2011.02.002
Leung M, Cooper A, Jana S, Tsao CT, Petrie TA, Zhang M (2013) Nanofiber-based in vitro system for high myogenic differentiation of human embryonic stem cells. Biomacromolecules 14(12):4207–4216. https://doi.org/10.1021/bm4009843
Li W, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2001) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res 60(4):614–621. Retrieved from http://so.med.wanfangdata.com.cn/ViewHTML/PeriodicalPaper_JJ0210742604.aspx
Lim SH, Mao HQ (2009) Electrospun scaffolds for stem cell engineering. Adv Drug Deliv Rev 61(12):1084–1096. https://doi.org/10.1016/j.addr.2009.07.011
Lindsley CW (2014) New statistics on the cost of new drug development and the trouble with CNS drugs. ACS Chem Neurosci 5(12):1142
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2012) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 64(SUPPL):4–17. https://doi.org/10.1016/j.addr.2012.09.019
Liu C, Zhu C, Li J, Zhou P, Chen M, Yang H, Li B (2015) The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res 3:15012. https://doi.org/10.1038/boneres.2015.12
Lorusso G, Rüegg C (2008) The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130(6):1091–1103. https://doi.org/10.1007/s00418-008-0530-8
Lotkov AI, Psakh’e SG, Meisner LL, Matveeva VA, Artem’eva LV, Meisner SN, Matveev AL (2012) The effect of chemical composition and roughness of titanium nickelide surface on proliferative properties of mesenchymal stem cells. Inorg Mater Appl Res 3(2):135–144. https://doi.org/10.1134/S2075113312020116
Ma C, Wang X-F (2008). In vitro assays for the extracellular matrix protein-regulated extravasation process. CSH Protocols, 2008, pdb.prot5034. https://doi.org/10.1101/pdb.prot5034
Ma H, Liu T, Qin J, Lin B (2010) Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device. Electrophoresis 31(10):1599–1605. https://doi.org/10.1002/elps.200900776
Ma J, He X, Jabbari E (2011) Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers. Ann Biomed Eng 39(1):14–25. https://doi.org/10.1007/s10439-010-0106-3
Ma X-J, Dahiya S, Richardson E, Erlander M, Sgroi DC (2009) Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res: BCR 11(1):R7. https://doi.org/10.1186/bcr2222
Macarron R, Banks MN, Bojanic D, Burns DJ, Cirovic DA, Garyantes T et al (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10(3):188–195. https://doi.org/10.1038/nrd3368
Macrí-Pellizzeri L, Pelacho B, Sancho A, Iglesias-García O, Simón-Yarza AM, Soriano-Navarro M et al (2015) Substrate stiffness and composition specifically direct differentiation of induced pluripotent stem cells. Tissue Eng A 21(9–10):1633–1641. https://doi.org/10.1089/ten.TEA.2014.0251
Mahairaki V, Lim SH, Christopherson GT, Xu L, Nasonkin I, Yu C et al (2011) Nanofiber matrices promote the neuronal differentiation of human embryonic stem cell-derived neural precursors in vitro. Tissue Eng Part A 17(5–6):855–863. https://doi.org/10.1089/ten.TEA.2010.0377
Maldonado M, Wong LY, Echeverria C, Ico G, Low K, Fujimoto T et al (2015) The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells. Biomaterials 50:10–19. https://doi.org/10.1016/j.biomaterials.2015.01.037
Mecham RP (ed) (2011) The extracellular matrix – an overview. Springer, St. Louis
Miao J, Miyauchi M, Simmons TJ, Dordick JS, Linhardt RJ (2010) Electrospinning of nanomaterials and applications in electronic components and devices. J Nanosci Nanotechnol 10(9):5507–5519. https://doi.org/10.1166/jnn.2010.3073
National Institutes of Health (n.d.) Nanomedicine. Retrieved January 1, 2015, from https://commonfund.nih.gov/nanomedicine/overview
National Nanotechnology Initiative (n.d.) Nanotechnology timeline. Retrieved January 1, 2015, from http://www.nano.gov/timeline
Nezarati RM, Eifert MB, Dempsey DK, Cosgriff-Hernandez E (2015) Electrospun vascular grafts with improved compliance matching to native vessels. J Biomed Mater Res B Appl Biomater 103(2):313–323. https://doi.org/10.1002/jbm.b.33201
Nishikawa M, Kojima N, Yamamoto T, Fujii T, Sakai Y (2008) An advanced in vitro liver tissue model by combination of on-site oxygenation and double-layer coculture with fibroblasts. AATEX 14(Special Issue):659–663
Pantoliano MW, Petrella EC, Kwasnoski JD, Lobanov VS, Myslik J, Graf E et al (2001) High-density miniaturized thermal shift assays as a general strategy for drug discovery. J Biomol Screen Off J Soc Biomol Screen 6(6):429–440. https://doi.org/10.1177/108705710100600609
Park JH, Chung BG, Lee WG, Kim J, Brigham MD, Shim J et al (2010) Microporous cell-laden hydrogels for engineered tissue constructs. Biotechnol Bioeng 106(1):138–148
Park JS, Chu JS, Tsou AD, Diop R, Tang Z, Wang A, Li S (2011) The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials 32(16):3921–3930. https://doi.org/10.1016/j.biomaterials.2011.02.019
Persidis A (1998) High-throughput screening. Advances in robotics and miniturization continue to accelerate drug lead identification. Nat Biotechnol 16(5):488–489. https://doi.org/10.1038/nbt0598-488
Phipps MC, Clem WC, Catledge S a, Xu Y, Hennessy KM, Thomas V et al (2011) Mesenchymal stem cell responses to bone-mimetic electrospun matrices composed of polycaprolactone, collagen I and nanoparticulate hydroxyapatite. PLoS ONE 6(2):1–8. https://doi.org/10.1371/journal.pone.0016813
Pillay V, Dott C, Choonara YE, Tyagi C, Tomar L, Kumar P et al (2013) A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications. J Nanomater 2013:1–22. https://doi.org/10.1155/2013/789289
Prabhakaran MP, Mobarakeh LG, Kai D, Karbalaie K, Nasr-Esfahani MH, Ramakrishna S (2014) Differentiation of embryonic stem cells to cardiomyocytes on electrospun nanofibrous substrates. Jf Biomed Mater Res Part B Appl Biomat 102(3):447–454. https://doi.org/10.1002/jbm.b.33022
Press Association (2014). Why tests on mice may be of little use. The Telegraph, pp 3–5. Retrieved from http://www.telegraph.co.uk/science/science-news/11241310/Why-tests-on-mice-may-be-of-little-use.html
Ramesh Kumar P, Khan N, Vivekanandhan S, Satyanarayana N, Mohanty AK, Misra M (2012) Nanofibers: effective generation by electrospinning and their applications. J Nanosci Nanotechnol 12(1):1–25. https://doi.org/10.1166/jnn.2012.5111
Ravichandran R, Venugopal JR, Sundarrajan S, Mukherjee S, Ramakrishna S (2013) Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World J Cardiol 5(3):28–41. https://doi.org/10.4330/wjc.v5.i3.28
Rederstorff E, Rethore G, Weiss P, Sourice S, Beck-Cormier S, Mathieu E et al (2015) Enriching a cellulose hydrogel with a biologically active marine exopolysaccharide for cell-based cartilage engineering. J Tissue Eng Regen Med. https://doi.org/10.1002/term.2018
Reynolds TY, Rockwell S, Glazer PM (1996) Genetic instability induced by the tumor microenvironment. Cancer Res 56(24):5754–5757. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8971187%5Cn, http://cancerres.aacrjournals.org/content/56/24/5754.full.pdf
Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140. https://doi.org/10.1016/j.ydbio.2009.10.026
Safaeijavan R, Soleimani M, Divsalar A, Eidi A, Ardeshirylajimi A (2014) Comparison of random and aligned PCL nanofibrous electrospun scaffolds on cardiomyocyte differentiation of human adipose-derived stem cells. Iran J Basic Med Sci 17(11):903–911
Salaam AD, Mishra M, Nyairo E, Dean D (2014) Electrospun polyvinyl alcohol/nanodiamond composite scaffolds: morphological, structural, and biological analysis. J Biomater Tissue Eng 4(3):173–180. https://doi.org/10.1166/jbt.2014.1152
Schindler C, Williams BL, Patel HN, Thomas V, Dean DR (2013) Electrospun polycaprolactone/polyglyconate blends: miscibility, mechanical behavior, and degradation. Polymer (United Kingdom) 54(25):6824–6833. https://doi.org/10.1016/j.polymer.2013.10.025
Sheets K, Wang J, Meehan S, Sharma P, Ng C, Khan M et al (2013) Cell-fiber interactions on aligned and suspended nanofiber scaffolds. J Biomater Tissue Eng 3(4):355–368. https://doi.org/10.1166/jbt.2013.1105
Sridhar S, Venugopal JR, Sridhar R, Ramakrishna S (2015) Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf B: Biointerfaces 134:346–354. https://doi.org/10.1016/j.colsurfb.2015.07.019
Sweeney SM (2014) AACR cancer progress report 2015. Am Assoc Cancer Res 126. https://doi.org/10.1158/1078-0432.CCR-12-2891
Taetle R, Honeysett JM, Rosen F, Shoemaker R (1986) Use of nude mouse xenografts as preclinical drug screens: Further studies onin vitro growth of xenograft tumor colony-forming cells. Cancer 58(9):1969–1978. https://doi.org/10.1002/1097-0142(19861101)58:9<1969::AID-CNCR2820580903>3.0.CO;2-4
Takimoto CH (2001) Why drugs fail: of mice and men revisited. Clin Cancer Res 7(2):229–230
Tamayol A, Akbari M, Annabi N, Paul A, Khademhosseini A, Juncker D (2013) Fiber-based tissue engineering: progress, challenges, and opportunities. Biotechnol Adv 31(5):669–687. https://doi.org/10.1016/j.biotechadv.2012.11.007
Thomas V, Dean DR, Jose MV, Mathew B, Chowdhury S, Vohra YK (2007a) Nanostructured biocomposite scaffolds based on collagen coelectrospun with nanohydroxyapatite. Biomacromolecules 8(2):631–637. https://doi.org/10.1021/bm060879w
Thomas V, Dean DR, Vohra YK (2006a) Nanostructured biomaterials for regenerative medicine. Curr Nanosci 2(3):155–177. https://doi.org/10.1007/978-1-4614-1080-5
Thomas V, Jagani S, Johnson K, Jose MV, Dean DR, Vohra YK, Nyairo E (2006b) Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J Nanosci Nanotechnol 6(2):487–493
Thomas V, Jose MV, Chowdhury S, Sullivan JF, Dean DR, Vohra YK (2006c) Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J Biomater Scie Polym Edn 17(9):969–984. https://doi.org/10.1163/156856206778366022
Thomas V, Zhang X, Catledge SA, Vohra YK (2007b) Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration. Biomed Mater (Bristol, England) 2(4):224–232. https://doi.org/10.1088/1748-6041/2/4/004
Thompson CJ, Chase GG, Yarin AL, Reneker DH (2007) Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48(23):6913–6922. https://doi.org/10.1016/j.polymer.2007.09.017
Trédan O, Galmarini CM, Patel K, Tannock IF (2007) Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 99(19):1441–1454. https://doi.org/10.1093/jnci/djm135
Tse JR, Engler AJ (2011) Stiffness gradients mimicking in vivo tissue variation regulate mesenchymal stem cell fate. PLoS ONE 6(1). https://doi.org/10.1371/journal.pone.0015978
Tucker N, Stanger JJ, Staiger MP, Razzaw H, Hofman K (2012) The history of the science and technology of electrospinning from 1600 to 1995. J Eng Fibers Fabrics 7:63–73
Tyagi P, Catledge SA, Stanishevsky A, Thomas V, Vohra YK (2009) Nanomechanical properties of electrospun composite scaffolds based on polycaprolactone and hydroxyapatite. J Nanosci Nanotechnol 9(8):4839–4845
Vakoc BJ, Lanning RM, Tyrrell JA, Padera TP, Bartlett LA, Stylianopoulos T et al (2009) Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat Med 15(10):1219–1223. https://doi.org/10.1038/nm.1971
van der Meer AD, van den Berg A (2012) Organs-on-chips: breaking the in vitro impasse. Integr Biol (Camb) 4(5):461–470. https://doi.org/10.1039/c2ib00176d
van Manen EH, Zhang W, Walboomers XF, Vazquez B, Yang F, Ji W et al (2014) The influence of electrospun fibre scaffold orientation and nano-hydroxyapatite content on the development of tooth bud stem cells in vitro. Odontology 102(1):14–21. https://doi.org/10.1007/s10266-012-0087-9
Wagner I, Materne E-M, Brincker S, Süssbier U, Frädrich C, Busek M et al (2013) A dynamic multi-organ-chip for long-term cultivation and substance testing proven by 3D human liver and skin tissue co-culture. Lab Chip 13(18):3538–3547. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23648632
Wang J, Ye R, Wei Y, Wang H, Xu X, Zhang F et al (2012) The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J Biomed Mater Res A 100(3):632–645. https://doi.org/10.1002/jbm.a.33291
Wang Z, Cui Y, Wang J, Yang X, Wu Y, Wang K et al (2014) The effect of thick fibers and large pores of electrospun poly(epsilon-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Biomaterials 35(22):5700–5710. https://doi.org/10.1016/j.biomaterials.2014.03.078
Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009. https://doi.org/10.1038/nature06526
Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912. https://doi.org/10.1038/onc.2008.271
Wise JK, Yarin AL, Megaridis CM, Cho M (2009) Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds - engineering the superficial zone of articular cartilage. Tissue Eng Part A 15(4):10
Wishart DS, Knox C, Guo AC, Shrivastava S, Hassanali M, Stothard P et al (2006) DrugBank: a comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res 34(Database issue):D668–D672. https://doi.org/10.1093/nar/gkj067
Yang L, Pang Y, Moses HL (2010) TGF-β and immune cells: an important regulatory axis in the tumor microenvironment and progression. Trends Immunol 31(6):220–227. https://doi.org/10.1016/j.it.2010.04.002
Ye K, Wang X, Cao L, Li S, Li Z, Yu L, Ding J (2015) Matrix stiffness and nanoscale spatial organization of cell-adhesive ligands direct stem cell fate. Nano Lett 15(7):4720–4729. https://doi.org/10.1021/acs.nanolett.5b01619
Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60(1):24–34. https://doi.org/10.1002/cm.20041
Young DA, Choi YS, Engler AJ, Christman KL (2013) Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. Biomaterials 34(34):8581–8588. https://doi.org/10.1016/j.biomaterials.2013.07.103
Youngstrom DW, Barrett JG, Jose RR, Kaplan DL (2013) Functional characterization of detergent-decellularized equine tendon extracellular matrix for tissue engineering applications. PLoS ONE 8(5). https://doi.org/10.1371/journal.pone.0064151
Zanatta G, Steffens D, Braghirolli DI, Fernandes RA, Netto CA, Pranke P (2012) Viability of mesenchymal stem cells during electrospinning. Braz J Med Biol Res 45(2):125–130. https://doi.org/10.1590/s0100-879x2011007500163
Zeleny J (1917) Instability of electrified liquid surfaces. Phys Rev 10(1):1–6. https://doi.org/10.1103/PhysRev.10.1
Zhao W, Li X, Liu X, Zhang N, Wen X (2014) Effects of substrate stiffness on adipogenic and osteogenic differentiation of human mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl 40:316–323. https://doi.org/10.1016/j.msec.2014.03.048
Zheng W, Spencer RH, Kiss L (2004) High throughput assay technologies for ion channel drug discovery. Assay Drug Dev Technol 2(5):543–552. https://doi.org/10.1089/adt.2004.2.543
Zhu B, Li W, Lewis RV, Segre CU, Wang R (2015) E-spun composite fibers of collagen and dragline silk protein: fiber mechanics, biocompatibility, and application in stem cell differentiation. Biomacromolecules 16(1):202–213. https://doi.org/10.1021/bm501403f
Acknowledgements
In addition to elixir international® and the National Science Foundation (NSF EPS 1158862, DMR 1460392 REU), for their generous support, we thank P. Sethu, M.N. Saleh, S. Pillay, C.A. Monroe, U.K. Vaidya, M.L. Weaver, HW. Jun, G. Walcott, H. Budhwani, J.R. Richter, K.F. Goliwas, A. Gangrade, A.T. Wood, H. Zhang, and J. Rogers for their insight and expertise. We would also like to acknowledge UAB Comprehensive Cancer Center (CCC), UAB Scanning Electron Microscope Lab, and Research Machine Shop for use of facilities and equipment.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Abbreviations
Abbreviations
ASC | Adult stem cells |
AACR | American Association for Cancer Research |
CVD | Cardiovascular diseases |
EC | Endothelial cells |
ECM | Extracellular matrix (or matrices) |
EHDA | Electrohydrodynamic atomization |
ESC | Embryonic stem cells |
FDA | Food and Drug Administration |
FITC | Fluorescein isothiocyanate |
HTS | High-throughput screening |
HMSC | Human mesenchymal stem cells |
iPSC | Induced pluripotent stem cells |
LOB | Lab-on-a-brane |
MSC | Mesenchymal stem cells |
nHA | Nanohydroxyapatite |
NIH | National Institutes of Health |
NSC | Neural stem cells |
NSF | National Science Foundation |
NSPC | Neural stem/progenitor cells |
pAA | Polyacrylamide |
PCL | Poly(Ɛ-caprolactone) |
PDMS | Polydimethyl siloxane |
PET | Polyethylene terephthalate |
PG | Proteoglycans |
PLGA | Polylactide-co-glycolide |
SC | Stem cells |
SEM | Scanning electron microscopy |
SMC | Smooth muscle cells |
UV | Ultraviolet |
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Budhwani, K.I., Oliver, P.G., Buchsbaum, D.J., Thomas, V. (2018). Novel Biomimetic Microphysiological Systems for Tissue Regeneration and Disease Modeling. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_6
Download citation
DOI: https://doi.org/10.1007/978-981-13-0947-2_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-0946-5
Online ISBN: 978-981-13-0947-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)