Modification of Titanium Implant and Titanium Dioxide for Bone Tissue Engineering

  • Tae-Keun Ahn
  • Dong Hyeon Lee
  • Tae-sup Kim
  • Gyu chol Jang
  • SeongJu Choi
  • Jong Beum Oh
  • Geunhee Ye
  • Soonchul LeeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1077)


Bone tissue engineering using titanium (Ti) implant and titanium dioxide (TiO2) with their modification is gaining increasing attention. Ti has been adopted as an implant material in dental and orthopedic fields due to its superior properties. However, it still requires modification in order to achieve robust osteointegration between the Ti implant and surrounding bone. To modify the Ti implant, numerous methods have been introduced to fabricate porous implant surfaces with a variety of coating materials. Among these, plasma spraying of hydroxyapatite (HA) has been the most commonly used with commercial success. Meanwhile, TiO2 nanotubes have been actively studied as the coating material for implants, and promising results have been reported about improving osteogenic activity around implants recently. Also porous three-dimensional constructs based on TiO2 have been proposed as scaffolding material with high biocompatibility and osteoconductivity in large bone defects. However, the use of the TiO2 scaffolds in load-bearing environment is somewhat limited. In order to optimize the TiO2 scaffolds, studies have tried to combine various materials with TiO2 scaffolds including drug, mesenchymal stem cells, Al2O3-SiO2 solid and HA. This article will shortly introduce the properties of Ti and Ti-based implants with their modification, and review the progress of bone tissue engineering using the TiO2 nanotubes and scaffolds.


Titanium Implant Titanium dioxide Nanotube Scaffold Bone 



This work was supported by Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health & Welfare, South Korea (grant number HI16C1559) and by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (grant number NRF-2016R1D1A1A02937040).


  1. 1.
    Adell R, Eriksson B, Lekholm U, Branemark PI, Jemt T (1990) Long-term follow-up study of osseointegrated implants in the treatment of totally edentulous jaws. Int J Oral Maxillofac Implants 5(4):347–359PubMedPubMedCentralGoogle Scholar
  2. 2.
    Amini AA, Nair LS (2012) Injectable hydrogels for bone and cartilage repair. Biomed Mater 7(2):024105. Scholar
  3. 3.
    Andersen OZ, Offermanns V, Sillassen M, Almtoft KP, Andersen IH, Sorensen S, Foss M (2013) Accelerated bone ingrowth by local delivery of strontium from surface functionalized titanium implants. Biomaterials 34(24):5883–5890. Scholar
  4. 4.
    Awad NK, Edwards SL, Morsi YS (2017) A review of TiO2 NTs on Ti metal: electrochemical synthesis, functionalization and potential use as bone implants. Mater Sci Eng C Mater Biol Appl 76:1401–1412. Scholar
  5. 5.
    Bae SE, Choi J, Joung YK, Park K, Han DK (2012) Controlled release of bone morphogenetic protein (BMP)-2 from nanocomplex incorporated on hydroxyapatite-formed titanium surface. J Control Release 160(3):676–684. Scholar
  6. 6.
    Bauer S, Park J, Faltenbacher J, Berger S, von der Mark K, Schmuki P (2009) Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. Integr Biol (Camb) 1(8–9):525–532. Scholar
  7. 7.
    Bjursten LM, Rasmusson L, Oh S, Smith GC, Brammer KS, Jin S (2010) Titanium dioxide nanotubes enhance bone bonding in vivo. J Biomed Mater Res A 92(3):1218–1224. Scholar
  8. 8.
    Capello WN, D’Antonio JA, Manley MT, Feinberg JR (1998) Hydroxyapatite in total hip arthroplasty. Clinical results and critical issues. Clin Orthop Relat Res 355:200–211CrossRefGoogle Scholar
  9. 9.
    Carragee EJ, Hurwitz EL, Weiner BK (2011) A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J 11(6):471–491. Scholar
  10. 10.
    Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194(4270):1174–1176CrossRefGoogle Scholar
  11. 11.
    Chen XB, Li YC, Du Plessis J, Hodgson PD, Wen C (2009) Influence of calcium ion deposition on apatite-inducing ability of porous titanium for biomedical applications. Acta Biomater 5(5):1808–1820. Scholar
  12. 12.
    Chien CY, Tsai WB (2013) Poly(dopamine)-assisted immobilization of Arg-Gly-Asp peptides, hydroxyapatite, and bone morphogenic protein-2 on titanium to improve the osteogenesis of bone marrow stem cells. ACS Appl Mater Interfaces 5(15):6975–6983. Scholar
  13. 13.
    Choi BH, Choi YS, Kang DG, Kim BJ, Song YH, Cha HJ (2010) Cell behavior on extracellular matrix mimic materials based on mussel adhesive protein fused with functional peptides. Biomaterials 31(34):8980–8988. Scholar
  14. 14.
    Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, Ellingsen JE (2006) Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials 27(6):926–936. Scholar
  15. 15.
    Daculsi G, Legeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 23(8):883–894. Scholar
  16. 16.
    Dimitriou R, Mataliotakis GI, Angoules AG, Kanakaris NK, Giannoudis PV (2011) Complications following autologous bone graft harvesting from the iliac crest and using the RIA: a systematic review. Injury 42(Suppl 2):S3–S15. Scholar
  17. 17.
    Elizabeth E, Baranwal G, Krishnan AG, Menon D, Nair M (2014) ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology 25(11):115101. Scholar
  18. 18.
    Ferreira JR, Hirsch ML, Zhang L, Park Y, Samulski RJ, Hu WS, Ko CC (2013) Three-dimensional multipotent progenitor cell aggregates for expansion, osteogenic differentiation and ‘in vivo’ tracing with AAV vector serotype 6. Gene Ther 20(2):158–168. Scholar
  19. 19.
    Fostad G, Hafell B, Førde A, Dittmann R, Sabetrasekh R, Will J, Ellingsen JE, Lyngstadaas SP, Haugen HJ (2009) Loadable TiO2 scaffolds—a correlation study between processing parameters, micro CT analysis and mechanical strength. J Eur Ceram Soc 29(13):2773–2781. Scholar
  20. 20.
    Frandsen CJ, Brammer KS, Jin S (2013) Variations to the nanotube surface for bone regeneration. Int J Biomater 2013:513680. Scholar
  21. 21.
    Frayssinet P, Hardy D, Rouquet N, Giammara B, Guilhem A, Hanker J (1992) New observations on middle term hydroxyapatite-coated titanium alloy hip prostheses. Biomaterials 13(10):668–674CrossRefGoogle Scholar
  22. 22.
    Gao Y, Zou S, Liu X, Bao C, Hu J (2009) The effect of surface immobilized bisphosphonates on the fixation of hydroxyapatite-coated titanium implants in ovariectomized rats. Biomaterials 30(9):1790–1796. Scholar
  23. 23.
    Garcia-Alonso MC, Saldana L, Valles G, Gonzalez-Carrasco JL, Gonzalez-Cabrero J, Martinez ME, Gil-Garay E, Munuera L (2003) In vitro corrosion behaviour and osteoblast response of thermally oxidised Ti6Al4V alloy. Biomaterials 24(1):19–26CrossRefGoogle Scholar
  24. 24.
    Gaviria L, Salcido JP, Guda T, Ong JL (2014) Current trends in dental implants. J Korean Assoc Oral Maxillofac Surg 40(2):50–60. Scholar
  25. 25.
    Gerhardt LC, Jell GM, Boccaccini AR (2007) Titanium dioxide (TiO(2)) nanoparticles filled poly(D,L lactid acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med 18(7):1287–1298. Scholar
  26. 26.
    Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34(13):3174–3183. Scholar
  27. 27.
    Gultepe E, Nagesha D, Sridhar S, Amiji M (2010) Nanoporous inorganic membranes or coatings for sustained drug delivery in implantable devices. Adv Drug Deliv Rev 62(3):305–315. Scholar
  28. 28.
    Guo CY, Hong Tang AT, Hon Tsoi JK, Matinlinna JP (2014) Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting. J Mech Behav Biomed Mater 32:145–154. Scholar
  29. 29.
    Haugen H, Will J, Köhler A, Hopfner U, Aigner J, Wintermantel E (2004) Ceramic TiO2-foams: characterisation of a potential scaffold. J Eur Ceram Soc 24(4):661–668. Scholar
  30. 30.
    Haugen HJ, Monjo M, Rubert M, Verket A, Lyngstadaas SP, Ellingsen JE, Rønold HJ, Wohlfahrt JC (2013) Porous ceramic titanium dioxide scaffolds promote bone formation in rabbit peri-implant cortical defect model. Acta Biomater 9(2):5390–5399. Scholar
  31. 31.
    He J, Huang T, Gan L, Zhou Z, Jiang B, Wu Y, Wu F, Gu Z (2012) Collagen-infiltrated porous hydroxyapatite coating and its osteogenic properties: in vitro and in vivo study. J Biomed Mater Res A 100(7):1706–1715. Scholar
  32. 32.
    Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017. Scholar
  33. 33.
    Hing KA, Annaz B, Saeed S, Revell PA, Buckland T (2005) Microporosity enhances bioactivity of synthetic bone graft substitutes. J Mater Sci Mater Med 16(5):467–475. Scholar
  34. 34.
    Holbig E, Dubrovinsky L, Miyajima N, Swamy V, Wirth R, Prakapenka V, Kuznetsov A (2008) Stiffening of nanoscale anatase Ti0. 9Zr0. 1O2 upon multiple compression cycles. J Phys Chem Solids 69(9):2230–2233. Scholar
  35. 35.
    Hong S, Yang K, Kang B, Lee C, Song IT, Byun E, Park KI, Cho S, Lee H (2013) Hyaluronic acid catechol: a biopolymer exhibiting a pH-dependent adhesive or cohesive property for human neural stem cell engineering. Adv Funct Mater 23:1774–1780. Scholar
  36. 36.
    Hu Y, Cai K, Luo Z, Zhang R, Yang L, Deng L, Jandt KD (2009) Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials 30(21):3626–3635. Scholar
  37. 37.
    Jain A, Kumar S, Aggarwal AN, Jajodia N (2015) Augmentation of bone healing in delayed and atrophic nonunion of fractures of long bones by partially decalcified bone allograft (decal bone). Indian J Orthop 49(6):637–642. Scholar
  38. 38.
    Jokinen M, Patsi M, Rahiala H, Peltola T, Ritala M, Rosenholm JB (1998) Influence of sol and surface properties on in vitro bioactivity of sol-gel-derived TiO2 and TiO2-SiO2 films deposited by dip-coating method. J Biomed Mater Res 42(2):295–302CrossRefGoogle Scholar
  39. 39.
    Kaluderovic MR, Schreckenbach JP, Graf HL (2016) Titanium dental implant surfaces obtained by anodic spark deposition – from the past to the future. Mater Sci Eng C Mater Biol Appl 69:1429–1441. Scholar
  40. 40.
    Kim SS, Gwak SJ, Kim BS (2008) Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2. J Biomed Mater Res A 87(1):245–253. Scholar
  41. 41.
    Kimura Y, Miyazaki N, Hayashi N, Otsuru S, Tamai K, Kaneda Y, Tabata Y (2010) Controlled release of bone morphogenetic protein-2 enhances recruitment of osteogenic progenitor cells for de novo generation of bone tissue. Tissue Eng Part A 16(4):1263–1270. Scholar
  42. 42.
    Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y (2007) Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 23(7):844–854. Scholar
  43. 43.
    Lee JS, Kim K, Park JP, Cho SW, Lee H (2017) Role of pyridoxal 5′-phosphate at the titanium implant Interface in vivo: increased Hemophilicity, inactive platelet adhesion, and osteointegration. Adv Healthc Mater 6(5). Scholar
  44. 44.
    LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81–98CrossRefGoogle Scholar
  45. 45.
    Leivo J, Meretoja V, Vippola M, Levanen E, Vallittu P, Mantyla TA (2006) Sol-gel derived aluminosilicate coatings on alumina as substrate for osteoblasts. Acta Biomater 2(6):659–668. Scholar
  46. 46.
    Lewallen EA, Riester SM, Bonin CA, Kremers HM, Dudakovic A, Kakar S, Cohen RC, Westendorf JJ, Lewallen DG, van Wijnen AJ (2015) Biological strategies for improved osseointegration and osteoinduction of porous metal orthopedic implants. Tissue Eng Part B Rev 21(2):218–230. Scholar
  47. 47.
    Lewandowska-Lancucka J, Fiejdasz S, Rodzik L, Koziel M, Nowakowska M (2015) Bioactive hydrogel-nanosilica hybrid materials: a potential injectable scaffold for bone tissue engineering. Biomed Mater 10(1):015020. Scholar
  48. 48.
    Lifland MI, Kim DK, Okazaki K (1993) Mechanical properties of a Ti-6A1-4V dental implant produced by electro-discharge compaction. Clin Mater 14(1):13–19CrossRefGoogle Scholar
  49. 49.
    Lin L, Wang H, Ni M, Rui Y, Cheng T, Cheng C, Pan X, Li G, Lin C (2014) Enhanced osteointegration of medical titanium implant with surface modifications in micro/nanoscale structures. J Orthop Translat 2(1):35–42. Scholar
  50. 50.
    Liu Y, Wu G, de Groot K (2010) Biomimetic coatings for bone tissue engineering of critical-sized defects. J R Soc Interface 7(Suppl 5):S631–S647. Scholar
  51. 51.
    Lu JX, Flautre B, Anselme K, Hardouin P, Gallur A, Descamps M, Thierry B (1999) Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci Mater Med 10(2):111–120CrossRefGoogle Scholar
  52. 52.
    Maquet V, Jerome R (1997) Design of macroporous biodegradable polymer scaffolds for cell transplantation. Mater Sci Forum 250:15–42. Scholar
  53. 53.
    Mas-Moruno C, Espanol M, Montufar EB, Mestres G, Aparicio C, Javier GF, Ginebra M (2013) Bioactive ceramic and metallic surfaces for bone engineering. Biomater Surf Sci 12:337–374. Scholar
  54. 54.
    Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9(2):61–71PubMedGoogle Scholar
  55. 55.
    Miyazaki M, Tsumura H, Wang JC, Alanay A (2009) An update on bone substitutes for spinal fusion. Eur Spine J 18(6):783–799. Scholar
  56. 56.
    Murphy CM, Haugh MG, O’Brien FJ (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31(3):461–466. Scholar
  57. 57.
    Naga SM, El-Kady AM, El-Maghraby HF, Awaad M, Detsch R, Boccaccini AR (2014) Novel porous Al2O3-SiO2-TiO2 bone grafting materials: formation and characterization. J Biomater Appl 28(6):813–824. Scholar
  58. 58.
    Nair M, Elizabeth E (2015) Applications of Titania nanotubes in bone biology. J Nanosci Nanotechnol 15(2):939–955CrossRefGoogle Scholar
  59. 59.
    Nayab SN, Jones FH, Olsen I (2005) Effects of calcium ion implantation on human bone cell interaction with titanium. Biomaterials 26(23):4717–4727. Scholar
  60. 60.
    Nishiguchi S, Kato H, Neo M, Oka M, Kim HM, Kokubo T, Nakamura T (2001) Alkali- and heat-treated porous titanium for orthopedic implants. J Biomed Mater Res 54(2):198–208CrossRefGoogle Scholar
  61. 61.
    Nygren H, Eriksson C, Lausmaa J (1997a) Adhesion and activation of platelets and polymorphonuclear granulocyte cells at TiO2 surfaces. J Lab Clin Med 129(1):35–46CrossRefGoogle Scholar
  62. 62.
    Nygren H, Tengvall P, Lundstrom I (1997b) The initial reactions of TiO2 with blood. J Biomed Mater Res 34(4):487–492CrossRefGoogle Scholar
  63. 63.
    Pagel M, Hassert R, John T, Braun K, Wießler M, Abel B, Beck-Sickinger AG (2016) Multifunctional coating improves cell adhesion on titanium by using cooperatively acting peptides. Angew Chem Int Ed Engl 55(15):4826–4830. Scholar
  64. 64.
    Park J, Bauer S, von der Mark K, Schmuki P (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691. Scholar
  65. 65.
    Park JW, Kim YJ, Jang JH, Song H (2010) Osteoblast response to magnesium ion-incorporated nanoporous titanium oxide surfaces. Clin Oral Implants Res 21(11):1278–1287. Scholar
  66. 66.
    Petrie TA, Raynor JE, Dumbauld DW, Lee TT, Jagtap S, Templeman KL, Collard DM, García AJ (2010) Multivalent integrin-specific ligands enhance tissue healing and biomaterial integration. Sci Transl Med 2(45):45ra60. Scholar
  67. 67.
    Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20(1):1–25CrossRefGoogle Scholar
  68. 68.
    Popat KC, Leoni L, Grimes CA, Desai TA (2007) Influence of engineered Titania nanotubular surfaces on bone cells. Biomaterials 28(21):3188–3197. Scholar
  69. 69.
    Pullisaar H, Reseland JE, Haugen HJ, Brinchmann JE, Ostrup E (2014) Simvastatin coating of TiO(2) scaffold induces osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. Biochem Biophys Res Commun 447(1):139–144. Scholar
  70. 70.
    Qiao C, Zhang K, Jin H, Miao L, Shi C, Liu X, Yuan A, Liu J, Li D, Zheng C, Zhang G, Li X, Yang B, Sun H (2013) Using poly(lactic-co-glycolic acid) microspheres to encapsulate plasmid of bone morphogenetic protein 2/polyethylenimine nanoparticles to promote bone formation in vitro and in vivo. Int J Nanomedicine 8:2985–2995. Scholar
  71. 71.
    Richardson WC Jr, Klawitter JJ, Sauer BW, Pruitt JR, Hulbert SF (1975) Soft tissue response to four dense ceramic materials and two clinically used biomaterials. J Biomed Mater Res 9(4):73–80. Scholar
  72. 72.
    Sabetrasekh R, Tiainen H, Reseland JE, Will J, Ellingsen JE, Lyngstadaas SP, Haugen HJ (2010) Impact of trace elements on biocompatibility of titanium scaffolds. Biomed Mater 5(1):15003. Scholar
  73. 73.
    Sabetrasekh R, Tiainen H, Lyngstadaas SP, Reseland J, Haugen H (2011) A novel ultra-porous titanium dioxide ceramic with excellent biocompatibility. J Biomater Appl 25(6):559–580. Scholar
  74. 74.
    Saleh MM, Touny AH, Al-Omair MA, Saleh MM (2016) Biodegradable/biocompatible coated metal implants for orthopedic applications. Biomed Mater Eng 27(1):87–99. Scholar
  75. 75.
    Smith YR, Ray RS, Carlson K, Sarma B, Misra M (2013) Self-ordered titanium dioxide nanotube arrays: anodic synthesis and their photo/electro-catalytic applications. Materials (Basel) 6(7):2892–2957. Scholar
  76. 76.
    Thieme M, Wieters KP, Bergner F, Scharnweber D, Worch H, Ndop J, Kim TJ, Grill W (2001) Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J Mater Sci Mater Med 12(3):225–231CrossRefGoogle Scholar
  77. 77.
    Tiainen H, Lyngstadaas SP, Ellingsen JE, Haugen HJ (2010) Ultra-porous titanium oxide scaffold with high compressive strength. J Mater Sci Mater Med 21(10):2783–2792. Scholar
  78. 78.
    Tiainen H, Wohlfahrt JC, Verket A, Lyngstadaas SP, Haugen HJ (2012) Bone formation in TiO2 bone scaffolds in extraction sockets of minipigs. Acta Biomater 8(6):2384–2391. Scholar
  79. 79.
    Vasilev K, Simovic S, Losic D, Griesser HJ, Griesser S, Anselme K, Ploux L (2010) Platforms for controlled release of antibacterial agents facilitated by plasma polymerization. Conf Proc IEEE Eng Med Biol Soc 2010:811–814. Scholar
  80. 80.
    von der Mark K, Park J, Bauer S, Schmuki P (2010) Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res 339(1):131–153. Scholar
  81. 81.
    von Wilmowsky C, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T, Schmuki P, Nkenke E, Schlegel KA (2009) In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J Biomed Mater Res B Appl Biomater 89(1):165–171. Scholar
  82. 82.
    von Wilmowsky C, Bauer S, Roedl S, Neukam FW, Schmuki P, Schlegel KA (2012) The diameter of anodic TiO2 nanotubes affects bone formation and correlates with the bone morphogenetic protein-2 expression in vivo. Clin Oral Implants Res 23(3):359–366. Scholar
  83. 83.
    Wagoner Johnson AJ, Herschler BA (2011) A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair. Acta Biomater 7(1):16–30. Scholar
  84. 84.
    Wang X, Li Y, Hodgson PD, Wen C (2010) Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering. Tissue Eng Part A 16(1):309–316. Scholar
  85. 85.
    Wang N, Li H, Lu W, Li J, Wang J, Zhang Z, Liu Y (2011) Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32(29):6900–6911. Scholar
  86. 86.
    Wang Q, Huang JY, Li HQ, Chen Z, Zhao AZ, Wang Y, Zhang KQ, Sun HT, Al-Deyab SS, Lai YK (2016) TiO2 nanotube platforms for smart drug delivery: a review. Int J Nanomedicine 11:4819–4834. Scholar
  87. 87.
    Wei Q, Zhang F, Li J, Li B, Zhao C (2010) Oxidant-induced dopamine polymerization for multifunctional coatings. Polym Chem 1:1430–1433. Scholar
  88. 88.
    Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Processing of biocompatible porous Ti and mg. Scr Mater 45(10):1147–1153. Scholar
  89. 89.
    Wongwitwichot P, Kaewsrichan J, Chua KH, Ruszymah BH (2010) Comparison of TCP and TCP/HA hybrid scaffolds for osteoconductive activity. Open Biomed Eng J 4:279–285. Scholar
  90. 90.
    Yelin E, Weinstein S, King T (2016) The burden of musculoskeletal diseases in the United States. Semin Arthritis Rheum 46(3):259–260. Scholar
  91. 91.
    Yu J, Wei W, Menyo MS, Masic A, Waite JH, Israelachvili JN (2013) Adhesion of mussel foot protein-3 to TiO2 surfaces: the effect of pH. Biomacromolecules 14(4):1072–1077. Scholar
  92. 92.
    Zena JW, van Williams G, Frederik C, Russell G, Gwendolen CR (2015) Porous titanium for dental implant application. Metals 5(4):1902–1920. Scholar
  93. 93.
    Zhang BG, Myers DE, Wallace GG, Brandt M, Choong PF (2014) Bioactive coatings for orthopaedic implants-recent trends in development of implant coatings. Int J Mol Sci 15(7):11878–11921. Scholar
  94. 94.
    Zhou Y, Ni Y, Liu Y, Zeng B, Xu Y, Ge W (2010) The role of simvastatin in the osteogenesis of injectable tissue-engineered bone based on human adipose-derived stromal cells and platelet-rich plasma. Biomaterials 31(20):5325–5335. Scholar
  95. 95.
    Zhu X, Zhang H, Zhang X, Ning C, Wang Y (2017) In vitro study on the osteogenesis enhancement effect of BMP-2 incorporated biomimetic apatite coating on titanium surfaces. Dent Mater J 36(5):677–685. Scholar
  96. 96.
    Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62(2):175–184. Scholar
  97. 97.
    Zwilling V, Aucouturier M, Darque-Ceretti E (1999) Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach. Electrochim Acta 45(6):921–929. Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Tae-Keun Ahn
    • 1
  • Dong Hyeon Lee
    • 2
  • Tae-sup Kim
    • 1
  • Gyu chol Jang
    • 1
  • SeongJu Choi
    • 1
  • Jong Beum Oh
    • 1
  • Geunhee Ye
    • 1
  • Soonchul Lee
    • 1
    Email author
  1. 1.Department of Orthopaedic Surgery, CHA Bundang Medical CenterCHA University School of MedicineGyeonggi-doSouth Korea
  2. 2.Department of PhysiologyCHA University School of MedicineGyeonggi-doSouth Korea

Personalised recommendations