Skip to main content

Bioceramics for Clinical Application in Regenerative Dentistry

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1077))

Abstract

Bioceramics represent functional ceramics with significant interest in regenerative medicine area. In orthopedics as well as in oral and maxillofacial surgery, bioceramics have been widely used as bone reconstructive materials. The most common one is hydroxyapatite which have been in the market and clinical applications since the mid of 1970s. Nowadays, a lot of works have been being in the pipeline to develop bioceramics for various clinical applications in regenerative medicine area, including dentistry. Bioceramics have been used and considered promising candidate for periodontal treatment, prevention of relapse, nerve regeneration, vaccine adjuvant, drug delivery technology, even for esthetic medicine and cosmetics. In this chapter, the advantages of bioceramics for regenerative therapy especially in dentistry is discussed. The overview of bioceramics classification is also explained. The future perspective and challenges on the use of bioceramics for next generation regenerative therapy is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alhasyimi AA, Pudyani PS, Asmara W, Ana ID (2017) Locally inhibition of orthodontic relapse by injection of carbonated hydroxy apatite-advanced platelet rich fibrin in a rabbit model. KEM 758:255–263

    Article  Google Scholar 

  2. Alhasyimi AA, Pudyani PS, Asmara W, ID A (2018) Enhancement of post-orthodontic tooth stability by carbonated hydroxyapatite-incorporated advanced-platelet rich fibrin in rabbits. Orthod Craniofac Res 21:112–118

    Article  CAS  Google Scholar 

  3. Ardhani R, Hafiyyah OA, Setyaningsih, Ana ID (2016) Preparation of carbonate apatite membrane as metronidazole delivery for periodontal application. KEM 696:250–258

    Article  Google Scholar 

  4. Ben-Nissan B (2003) Natural bioceramics: from coral to bone and beyond. Curr Opin Solid State Mater Sci 7:283–288

    Article  CAS  Google Scholar 

  5. Braig AA, Fox J, Su Z, Wang M, Otsuka W, Higuchi I, Legeros RZ (1996) Effect of carbonate content and crystallinity on the metastable equilibrium solubility behavior of carbonate apatite. J Colloid Interface Sci 179:608–617

    Article  Google Scholar 

  6. Carson JS, Bostrom MPG (2007) Synthetic bone scaffolds and fracture repair. Inj Int J Care Injured 3851:533–537

    Google Scholar 

  7. Chun Wu Y, Min Lee T, Hsun Chiu K, Yu Shaw S, Yu Yang C (2009) A comparative study of the physical and mechanical properties of three natural corals based on the criteria for bone-tissue engineering scaffolds. J Mater Sci Mater Med 20:1273–1280

    Article  Google Scholar 

  8. Cirotteau Y (2001) Behavior of natural coral in a human osteoporotic bone. Eur J Orthop Surg Traumatol 11:149–160

    Article  Google Scholar 

  9. Combes C, Miao B, Bareille R, Rey C (2006) Preparation, physical-chemical characterization and cytocompatibility of calcium carbonate cements. Biomaterials 27:1945–1954

    Article  CAS  Google Scholar 

  10. Dewi AH, Ana ID, Wolke JGC, Jansen JA (2013) Behavior of plaster of Paris-calcium carbonate composite as bone substitute. A study in rats. J Biomed Mater Res A 101(8):2143–2150

    Article  Google Scholar 

  11. Dewi AH, Ana ID, Wolke JGC, Jansen JA (2015) Behavior of POP-calcium carbonate hydrogel as bone substitute with controlled release capability: a study in rat. J Biomed Mater Res A 103:3273–3283

    Article  CAS  Google Scholar 

  12. Dewi AH, Ana ID, Jansen JA (2016) Calcium carbonate hydrogel construct with cynnamaldehyde incorporated to control infammation during surgical procedure. J Biomed Mater Res Part A 104:768–774

    Article  CAS  Google Scholar 

  13. Dewi AH, Ana ID, Jansen JA (2017) Preparation of a calcium carbonate-based bone substitute with cinnamaldehyde crosslinking agent with potential anti-inflammatory properties. J Biomed Mater Res A 105(4):1055–1062

    Article  CAS  Google Scholar 

  14. Ducheyne P (1987) Bioceramics: material characteristics versus in vivo behavior. J Biomed Mater Res B 21:219–236

    CAS  Google Scholar 

  15. Dorozhkin SV (2011) Calcium orthophosphates: occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter 1:121–164 Taylor and Francis

    Article  Google Scholar 

  16. El-ghannam A, Ducheyne P, Saphiro IM (1997) Formation of surface reaction products of bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix. Biomaterials 18:295–303

    Article  CAS  Google Scholar 

  17. Frank RM, Klewansky P, Hemmerle J, Tenenbaum H (1991) Ultrastructure demonstration of the importance of crystal size of bioceramic powders implanted into human periodontal lesions. J Clin Periodontal 18:669–680

    Article  CAS  Google Scholar 

  18. Frayssinet P, Rouquet N, Fages J, Durant M, Vidalain PO, Bonel G (1997) The influence of sintering temperature on the proliferation of fibroblastic cells in contact with HA bioceramics. J Biomed Mater Res 35:337–347

    Article  CAS  Google Scholar 

  19. Gauthier O, Muller R, Von Stechow D, Lamy B, Weiss P, Bouler JM, Aguado E, Daculsi G (2005) In vivo bone regeneration with injectable calcium phosphate biomaterial: a three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials 26(27):5444–5453

    Article  CAS  Google Scholar 

  20. Hench LL et al (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res A 5(6):117–141

    Article  Google Scholar 

  21. Hench LL, Wilson J (1993) An introduction to bioceramics. Advanced series in ceramics, vol 1, pp 1–24

    Chapter  Google Scholar 

  22. Iezzi G, Fiera E, Scarano A, Pecora G, Piatelli A (2007) Histologic evaluation of provisional implant retrieved from man 7 months after placement in a sinus augmented with calcium sulfate: a case report. J Oral Implantol 33(2):89–95

    Article  Google Scholar 

  23. Ishikawa K (2015) Carbonate apatite bone replacement. In: Antoniac I (ed) Handbook of bioceramics and biocomposites. Springer, Cham

    Google Scholar 

  24. Jamali A, Hilpert A, Debes J, Afshar P, Rahban S, Holmes R (2002) Hydroxyapatite/calcium carbonate (HA/CC) vs. Plaster of Paris: a histomorphometric and radiographic study in a rabbit tibial defect model. Calcif Tissue Int 1:172–178

    Article  Google Scholar 

  25. Jones JR (2008) Bioactive glass. In: Kokubo T (ed) Bioceramics and their clinical applications. Woodhead Publishing, Cambridge

    Google Scholar 

  26. Kameda T, Mano H, Yamada Y, Takai H, Amizuka N, Kobori M, Izumi N, Kawashima H, Ozawa H, Ikeda K, Kameda A, Hakeda Y, Kumegawa M (1998) Calcium-sensing receptor in mature osteoclasts, which are bone-resorbing cells. Biochem Biophys Res Commun 245:419–422

    Article  CAS  Google Scholar 

  27. Leeuwenburgh SCG, Ana ID, Jansen JA (2010) Sodium citrate as an effective dispersant for the synthesis of inorganic-organic composites with a nanodispersed mineral phase. Acta Biomater 6(3):836–844

    Article  CAS  Google Scholar 

  28. Mahanani ES, Bachtiar I, Ana ID (2016a) Human mesenchymal stem cells behavior on synthetic coral scaffold. KEM 696:205–211

    Article  Google Scholar 

  29. Mahanani ES, Herningtyas EH, Bachtiar I, ID A (2016b) Degradation profile and fibroblast proliferation on synthetic coral scaffold for bone regeneration. AIP Conf Proc 1755:160007

    Article  Google Scholar 

  30. Matsuya S, Lin X, Udoh K, Nakagawa M, Shimogoryo R, Terada Y, Ishikawa K (2007) Fabrication of porous low crystalline calcite block by carbonation of calcium hydroxide compact. J Mater Sci Mater Med 18:1361–1367

    CAS  PubMed  Google Scholar 

  31. Mazor Z, Mamidwar S, Ricci JL, Tovar NM (2011) Bone repair in periodontal defect using a composite of allograft and calcium sulfate (dentogen) and a calciumsulfate barrier. J Oral Implantol 37:287–292

    Article  Google Scholar 

  32. Landi E, Tampieri A, Belmonte MM, Celotti G, Sandri M, Gigante A, Grazie PF, Biagini I (2006) Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: synthesis characterization and in vitro behavior. J Eur Ceram Soc 26(13):2593–2601

    Article  CAS  Google Scholar 

  33. Oonishi H, Hench LL, Wilson J, Sugihara F, Tsuji E, Kushitani S, Iwaki H (1999) Comparative bone growth behavior in granules of bioceramic materials of various sizes. J Biomed Mater Res 44:31–43

    Article  CAS  Google Scholar 

  34. Orsini G, Ricci J, Scarano A, Pecora G, Petrone G, Iezzi G, Piatelli A (2004) Bone-defect healing with calcium-sulfate particles and cement: an expermental study in rabbit. Int J Oral Maxillofac Implant 24:901–909

    Google Scholar 

  35. Patriati A, Ardhani R, Pranowo HD, ID A (2016) Effect of freeze-thaw treatment to the properties of gelatincarbonated hydroxy apatite membrane for nerve regeneration scaffold. KEM 696:129–144

    Article  Google Scholar 

  36. Redey SA, Nardin M, Assolant DB, Rey C, Dellanoy P, Sedel L, Marie PJ (2000) Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type-a carbonated apatite. J Biomed Mater Res 50(3):353–364

    Article  CAS  Google Scholar 

  37. Suchanek W, Shuk P, Byrappa K, Riman RE, Tenhuisen KS, Janas VF (2002) Mechanochemical-hydrothermal synthesis of carbonated apatite powders at room temperature. Biomaterials 23:669–710

    Article  Google Scholar 

  38. Supova M (2009) Problem of hydroxyapatite dispersion in polymer matrices: a review. J Mater Sci Mater Med 20:1201–1213

    Article  CAS  Google Scholar 

  39. Tanaka Y, Yamashita K (2008) Fabrication processes of bioceramics. In: Kokubo T (ed) Bioceramics and their clinical applications. Woodhead Publishing, Cambridge

    Google Scholar 

  40. Thomas MV, Puleo DA (2008) Calcium sulfate: properties and clinical application. J Biomed Mater Res B 88:597

    Google Scholar 

  41. Tsuru K, Ruslin R, Maruta M, Matsuya S, Ishikawa K (2015) Effects of the method of apatite seed crystals addition on setting reaction of ?-tricalcium phosphate based apatite cement. J Mater Sci Mater Med 26(10):244–249

    Article  Google Scholar 

  42. Wang C, Duan W, Markovic B, Barbara J, Howlett CR, Zhang X, Zreiqat H (2004) Proliferation and bonerelated gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials 25:2949–2956

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ika Dewi Ana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ana, I.D., Satria, G.A.P., Dewi, A.H., Ardhani, R. (2018). Bioceramics for Clinical Application in Regenerative Dentistry. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_16

Download citation

Publish with us

Policies and ethics