The Diagnosis of Parkinson’s Disease: Current Clinical Practice and Future Trends

  • Roberto López Blanco
  • Álvaro Sánchez FerroEmail author


The diagnosis of Parkinson’s disease relies on a thorough medical history and a detailed neurological examination. For this clinical diagnosis, a special emphasis should be made in ruling out atypical symptoms or signs that suggest alternative disorders. When an atypical parkinsonism is suspected, ancillary tests can be used to exclude or confirm it. Additionally, dopamine markers are commonly used to detect the characteristic nigrostriatal impairment found in Parkinson’s disease. Recently, in addition to these more “traditional” diagnostic procedures, new technologies have been opening a new era that will shortly revolutionize the diagnosis and management of Parkinson’s disease.


Parkinson’s disease Atypical Parkinson’s disease Secondary Parkinsonism Technology assessment 


  1. 1.
    Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, Huber S, Koller W, Olanow C, Shoulson I. Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. The Parkinson Study Group. Neurology. 1990;40:1529–34.CrossRefGoogle Scholar
  2. 2.
    Marras C, Lang A. Parkinson’s disease subtypes: lost in translation? J Neurol Neurosurg Psychiatry. 2013;84:409–15.CrossRefGoogle Scholar
  3. 3.
    Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5:235–45.CrossRefGoogle Scholar
  4. 4.
    Park A, Stacy M. Non-motor symptoms in Parkinson’s disease. J Neurol. 2009;256:293–8.CrossRefGoogle Scholar
  5. 5.
    Shulman LM, Taback RL, Rabinstein AA, Weiner WJ. Non-recognition of depression and other non-motor symptoms in Parkinson’s disease. Parkinsonism Relat Disord. 2002;8:193–7.CrossRefGoogle Scholar
  6. 6.
    Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, Chaudhuri KR. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson’s disease. Mov Disord. 2011;26:399–406.CrossRefGoogle Scholar
  7. 7.
    Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.CrossRefGoogle Scholar
  8. 8.
    Fereshtehnejad S, Romenets S, Anang J, et al. New clinical subtypes of Parkinson disease and their longitudinal progression. JAMA Neurol. 2015;72:E1–11.CrossRefGoogle Scholar
  9. 9.
    NICE. Parkinson’s disease: national clinical guideline for diagnosis and management in primary and secondary care. London: Royal College of Physicians of London; 2006.Google Scholar
  10. 10.
    Grosset DG, Macphee GJA, Nairn M, Guideline Development Group. Diagnosis and pharmacological management of Parkinson’s disease: summary of SIGN guidelines. BMJ. 2010;340:b5614.CrossRefGoogle Scholar
  11. 11.
    Gibb WR, Lees AJ. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1988;51:745–52.CrossRefGoogle Scholar
  12. 12.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.CrossRefGoogle Scholar
  13. 13.
    Rajput AH, Rozdilsky B, Rajput A. Accuracy of clinical diagnosis in parkinsonism—a prospective study. Can J Neurol Sci. 1991;18:275–8.CrossRefGoogle Scholar
  14. 14.
    Hughes AJ, Daniel SE, Lees AJ. Improved accuracy of clinical diagnosis of Lewy body Parkinson’s disease. Neurology. 2001;57:1497–9.CrossRefGoogle Scholar
  15. 15.
    Berardelli A, Wenning GK, Antonini A, et al. EFNS/MDS-ES recommendations for the diagnosis of Parkinson’s disease. Eur J Neurol. 2013;20:16–34.CrossRefGoogle Scholar
  16. 16.
    Romero JP, Benito-León J, Bermejo-Pareja F. The NEDICES study: recent advances in the understanding of the epidemiology of essential tremor. Tremor Other Hyperkinet Mov. 2012;2:1–8.Google Scholar
  17. 17.
    Gilman S, Wenning GK, Low PA, et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology. 2008;71:670–6.CrossRefGoogle Scholar
  18. 18.
    Fanciulli A, Wenning GK. Multiple-system atrophy. N Engl J Med. 2015;372:249–63.CrossRefGoogle Scholar
  19. 19.
    Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22:1689–707.CrossRefGoogle Scholar
  20. 20.
    Berg D, Postuma RB, Bloem B, et al. Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov Disord. 2014;29:454–62.CrossRefGoogle Scholar
  21. 21.
    Boeve BF, Dickson DW, Duda JE, et al. Arguing against the proposed definition changes of PD. Mov Disord. 2016;31(11):1619–22. Scholar
  22. 22.
    Bondon-Guitton E, Perez-Lloret S, Bagheri H, Brefel C, Rascol O, Montastruc J-L. Drug-induced parkinsonism: a review of 17 years’ experience in a regional pharmacovigilance center in France. Mov Disord. 2011;26:2226–31.CrossRefGoogle Scholar
  23. 23.
    Vizcarra JA, Lang AE, Sethi KD, Espay AJ. Vascular parkinsonism: deconstructing a syndrome. Mov Disord. 2015;30:886–94.CrossRefGoogle Scholar
  24. 24.
    Bret P, Guyotat J, Chazal J. Is normal pressure hydrocephalus a valid concept in 2002? A reappraisal in five questions and proposal for a new designation of the syndrome as “chronic hydrocephalus”. J Neurol Neurosurg Psychiatry. 2002;73:9–12.CrossRefGoogle Scholar
  25. 25.
    Gaenslen A, Unmuth B, Godau J, et al. The specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson’s disease: a prospective blinded study. Lancet Neurol. 2008;7:417–24.CrossRefGoogle Scholar
  26. 26.
    Berg D, Merz B, Reiners K, Naumann M, Becker G. Five-year follow-up study of hyperechogenicity of the substantia nigra in Parkinson’s disease. Mov Disord. 2005;20:383–5.CrossRefGoogle Scholar
  27. 27.
    Politis M. Neuroimaging in Parkinson disease: from research setting to clinical practice. Nat Rev Neurol. 2014;10:708–22.CrossRefGoogle Scholar
  28. 28.
    Mahlknecht P, Hotter A, Hussl A, Esterhammer R, Schocke M, Seppi K. Significance of MRI in diagnosis and differential diagnosis of Parkinson’s disease. Neurodegener Dis. 2010;7:300–18.CrossRefGoogle Scholar
  29. 29.
    Lehericy S, Bardinet E, Poupon C, Vidailhet M, Francois C. 7 Tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson’s disease. Mov Disord. 2014;29:1574–81.CrossRefGoogle Scholar
  30. 30.
    Mehnert S, Reuter I, Schepp K, Maaser P, Stolz E, Kaps M. Transcranial sonography for diagnosis of Parkinson’s disease. BMC Neurol. 2010;10:9.CrossRefGoogle Scholar
  31. 31.
    Brunser AM, Silva C, Cárcamo D, Muñoz P, Hoppe A, Olavarría VV, Díaz V, Abarca J. Transcranial Doppler in a Hispanic-Mestizo population with neurological diseases: a study of sonographic window and its determinants. Brain Behav. 2012;2:231–6.CrossRefGoogle Scholar
  32. 32.
    Seibyl JP, Marek KL, Quinlan D, et al. Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol. 1995;38:589–98.CrossRefGoogle Scholar
  33. 33.
    Marshall V, Grosset D. Role of dopamine transporter imaging in routine clinical practice. Mov Disord. 2003;18:1415–23.CrossRefGoogle Scholar
  34. 34.
    Stoessl AJ, Lehericy S, Strafella AP. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia. Lancet. 2014;384:532–44.CrossRefGoogle Scholar
  35. 35.
    Tinazzi M, Antonini A, Bovi T, Pasquin I, Steinmayr M, Moretto G, Fiaschi A, Ottaviani S. Clinical and [123I]FP-CIT SPET imaging follow-up in patients with drug-induced parkinsonism. J Neurol. 2009;256:910–5.CrossRefGoogle Scholar
  36. 36.
    Marek K, Seibyl J, Eberly S, Oakes D, Shoulson I, Lang AE, Hyson C, Jennings D. Longitudinal follow-up of SWEDD subjects in the PRECEPT study. Neurology. 2014;82:1791–7.CrossRefGoogle Scholar
  37. 37.
    Marshall VL, Reininger CB, Marquardt M, et al. Parkinson’s disease is overdiagnosed clinically at baseline in diagnostically uncertain cases: a 3-year European multicenter study with repeat [123I]FP-CIT SPECT. Mov Disord. 2009;24:500–8.CrossRefGoogle Scholar
  38. 38.
    Sprenger FS, Seppi K, Djamshidian A, Reiter E, Nocker M, Mair K, Göbel G, Poewe W. Nonmotor symptoms in subjects without evidence of dopaminergic deficits. Mov Disord. 2015;30:976–81.CrossRefGoogle Scholar
  39. 39.
    Batla A, Erro R, Stamelou M, Schneider SA, Schwingenschuh P, Ganos C, Bhatia KP. Patients with scans without evidence of dopaminergic deficit: a long-term follow-up study. Mov Disord. 2014;29:1820–5.CrossRefGoogle Scholar
  40. 40.
    Erro R, Schneider SA, Stamelou M, Quinn NP, Bhatia KP. What do patients with scans without evidence of dopaminergic deficit (SWEDD) have? New evidence and continuing controversies. J Neurol Neurosurg Psychiatry. 2016;87:319–23.CrossRefGoogle Scholar
  41. 41.
    Kim YJ, Ichise M, Ballinger JR, Vines D, Erami SS, Tatschida T, Lang AE. Combination of dopamine transporter and D2 receptor SPECT in the diagnostic evaluation of PD, MSA, and PSP. Mov Disord. 2002;17:303–12.CrossRefGoogle Scholar
  42. 42.
    Chung EJ, Kim SJ. (123)I-metaiodobenzylguanidine myocardial scintigraphy in lewy body-related disorders: a literature review. J Mov Disord. 2015;8:55–66.CrossRefGoogle Scholar
  43. 43.
    Granert O, Drzezga AE, Boecker H, Perneczky R, Kurz A, Gotz J, van Eimeren T, Haussermann P. Metabolic topology of neurodegenerative disorders: influence of cognitive and motor deficits. J Nucl Med. 2015;56:1916–21.CrossRefGoogle Scholar
  44. 44.
    Tang Y, Ge J, Liu F, et al. Cerebral metabolic differences associated with cognitive impairment in Parkinson’s disease. PLoS One. 2016;11:1–11.Google Scholar
  45. 45.
    Harbo HF, Finsterer J, Baets J, et al. EFNS guidelines on the molecular diagnosis of neurogenetic disorders: general issues, Huntington’s disease, Parkinson’s disease and dystonias. Eur J Neurol. 2009;16:777–85.CrossRefGoogle Scholar
  46. 46.
    Gasser T. Molecular pathogenesis of Parkinson disease: insights from genetic studies. Expert Rev Mol Med. 2009;11:e22.CrossRefGoogle Scholar
  47. 47.
    Marras C, Lang A, van de Warrenburg BP, et al. Nomenclature of genetic movement disorders: recommendations of the international Parkinson and movement disorder society task force. Mov Disord. 2016;31:436–57.CrossRefGoogle Scholar
  48. 48.
    Alcalay RN, Dinur T, Quinn T, et al. Comparison of Parkinson risk in Ashkenazi Jewish patients with Gaucher disease and GBA heterozygotes. JAMA Neurol. 2014;71:752–7.CrossRefGoogle Scholar
  49. 49.
    Hawkes CH, Shephard BC, Daniel SE. Olfactory dysfunction in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1997;62(5):436–46.CrossRefGoogle Scholar
  50. 50.
    Kim M, Jung JH, Park J, et al. Impaired detrusor contractility is the pathognomonic urodynamic finding of multiple system atrophy compared to idiopathic Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(3):205–10.CrossRefGoogle Scholar
  51. 51.
    Hoehn MM, Yahr MD. Parkinsonism: onset, progression, and mortality. Neurology. 1967;17(5):427–42.CrossRefGoogle Scholar
  52. 52.
    Schwab R, England A. Projection technique for evaluating surgery in Parkinson’s disease. In: Billingham FH, Donaldson MC, editors. Third symposium on Parkinson’s disease. Edinburgh: Churchill Livingstone; 1969. p. 152–7.Google Scholar
  53. 53.
    Martínez-Martin P, Gil-Nagel A, Morlán Gracia L, et al. Intermediate scale for assessment of Parkinson’s disease. Characteristics and structure. Parkinsonism Relat Disord. 1995;1(2):97–102.Google Scholar
  54. 54.
    Goetz CG, Poewe W, Rascol O, Sampaio C, Stebbins GT. The unified Parkinson’s disease rating scale (UPDRS): status and recommendations. Mov Disord. 2003;18:738–50.CrossRefGoogle Scholar
  55. 55.
    Marinus J, Visser M, Stiggelbout AM, et al. A short scale for the assessment of motor impairments and disabilities in Parkinson’s disease: the SPES/SCOPA. J Neurol Neurosurg Psychiatry. 2004;75:388–95.CrossRefGoogle Scholar
  56. 56.
    Goetz CG, Tilley BC, Shaftman SR, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23:2129–70.CrossRefGoogle Scholar
  57. 57.
    Goetz CG, Nutt JG, Stebbins GT. The Unified Dyskinesia Rating Scale: presentation and clinimetric profile. Mov Disord. 2008;23(16):2398–403.CrossRefGoogle Scholar
  58. 58.
    Burti L, Parolin A, Zanotelli R. Tardive dyskinesia. AIMS (Abnormal Involuntary Movement Scale) as a diagnostic and research tool. Minerva Med. 1981;72(42):2829–36.PubMedGoogle Scholar
  59. 59.
    Martinez-Martin P, Tolosa E, Hernandez B, Badia X. Validation of the “QUICK” questionnaire--a tool for diagnosis of “wearing-off” in patients with Parkinson’s disease. Mov Disord. 2008;23(6):830–6.CrossRefGoogle Scholar
  60. 60.
    Martinez-Martin P, Hernandez B. The Q10 questionnaire for detection of wearing-off phenomena in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18(4):382–5.CrossRefGoogle Scholar
  61. 61.
    Hauser RA, Deckers F, Lehert P. Parkinson’s disease home diary: further validation and implications for clinical trials. Mov Disord. 2004;19:1409–13.CrossRefGoogle Scholar
  62. 62.
    Thomas M, Jankovic J, Suteerawattananon M, et al. Clinical gait and balance scale (GABS): validation and utilization. J Neurol Sci. 2004;217(1):89–99.CrossRefGoogle Scholar
  63. 63.
    Giladi N, Shabtai H, Simon ES, Biran S, Tal J, Korczyn AD. Construction of freezing of gait questionnaire for patients with Parkinsonism. Parkinsonism Relat Disord. 2000;6(3):165–70.CrossRefGoogle Scholar
  64. 64.
    Romenets SR, Wolfson C, Galatas C, et al. Validation of the non-motor symptoms questionnaire (NMS-Quest). Parkinsonism Relat Disord. 2012;18(1):54–8.CrossRefGoogle Scholar
  65. 65.
    Chaudhuri KR, Martinez-Martin P, Brown RG, et al. The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord. 2007;22(13):1901–11.CrossRefGoogle Scholar
  66. 66.
    Goldman JG, Holden S, Ouyang B, Bernard B, Goetz CG, Stebbins GT. Diagnosing PD-MCI by MDS Task Force criteria: how many and which neuropsychological tests? Mov Disord. 2015;30(3):402–6.CrossRefGoogle Scholar
  67. 67.
    Maetzler W, Klucken J, Horne M. A clinical view on the development of technology-based tools in managing Parkinson’s disease. Mov Disord. 2016;31:1263–71.CrossRefGoogle Scholar
  68. 68.
    Sánchez-Ferro Á, Elshehabi M, Godinho C, Salkovic D, Hobert MA, Domingos J, van Uem JM, Ferreira JJ, Maetzler W. New methods for the assessment of Parkinson’s disease (2005 to 2015): a systematic review. Mov Disord. 2016;31:1283–92.CrossRefGoogle Scholar
  69. 69.
    Catafau AM, Bullich S. Non-amyloid PET imaging biomarkers for neurodegeneration: focus on tau, alpha-synuclein and neuroinflamation. Curr Alzheimer Res. 2017;14(2):169–77.CrossRefGoogle Scholar
  70. 70.
    Sánchez-Ferro Á, Rábano A, Catalán MJ, et al. In vivo gastric detection of α-synuclein inclusions in Parkinson’s disease. Mov Disord. 2015;30:517–24.CrossRefGoogle Scholar
  71. 71.
    LeWitt PA, Li J, Lu M, Guo L, Auinger P. Metabolomic biomarkers as strong correlates of Parkinson disease progression. Neurology. 2017;88(9):862–9.CrossRefGoogle Scholar
  72. 72.
    Wang X, Yu S, Li F, Feng T. Detection of α-synuclein oligomers in red blood cells as a potential biomarker of Parkinson’s disease. Neurosci Lett. 2015;599:115–9.CrossRefGoogle Scholar
  73. 73.
    Lee JM, Derkinderen P, Kordower JH, et al. The search for a peripheral biopsy indicator of alpha-synuclein pathology for parkinson disease. J Neuropathol Exp Neurol. 2017;76(1):2–15.PubMedGoogle Scholar
  74. 74.
    Hall S, Surova Y, Öhrfelt A, Zetterberg H, Lindqvist D, Hansson O. CSF biomarkers and clinical progression of Parkinson disease. Neurology. 2015;84:57–63.CrossRefGoogle Scholar
  75. 75.
    Abd-Elhadi S, Basora M, Vilas D, Tolosa E, Sharon R. Total alpha-synuclein levels in human blood cells, CSF, and saliva determined by a lipid-ELISA. Anal Bioanal Chem. 2016;408:7669–77.CrossRefGoogle Scholar
  76. 76.
    Chen L, Mo M, Li G, et al. The biomarkers of immune dysregulation and inflammation response in Parkinson disease. Transl Neurodegener. 2016;5:16.CrossRefGoogle Scholar
  77. 77.
    Berg D, Postuma RB, Adler CH, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord. 2015;30(12):1600–11.CrossRefGoogle Scholar
  78. 78.
    Carter A, Liddle J, Hall W, Chenery H. Mobile phones in research and treatment: ethical guidelines and future directions. JMIR mHealth uHealth. 2015;3:e95.CrossRefGoogle Scholar
  79. 79.
    Harries T, Eslambolchilar P, Rettie R, Stride C, Walton S, van Woerden HC. Effectiveness of a smartphone app in increasing physical activity amongst male adults: a randomised controlled trial. BMC Public Health. 2016;16:925.CrossRefGoogle Scholar
  80. 80.
    Dorsey ER, Vlaanderen FP, Engelen LJ, Kieburtz K, Zhu W, Biglan KM, Faber MJ, Bloem BR. Moving Parkinson care to the home. Mov Disord. 2016;31:1258–62.CrossRefGoogle Scholar
  81. 81.
    Silva de Lima AL, Hahn T, de Vries NM, Cohen E, Bataille L, Little MA, Baldus H, Bloem BR, Faber MJ. Large-scale wearable sensor deployment in Parkinson’s patients: the parkinson@home study protocol. JMIR Res Protoc. 2016;5:e172.CrossRefGoogle Scholar
  82. 82.
    Kubben PL, Kuijf ML, Ackermans LPCM, Leentjes AFG, Temel Y. TREMOR12: an open-source mobile app for TREMOR quantification. Stereotact Funct Neurosurg. 2016;94:182–6.CrossRefGoogle Scholar
  83. 83.
    Del Din S, Godfrey A, Mazzà C, Lord S, Rochester L. Free-living monitoring of Parkinson’s disease: lessons from the field. Mov Disord. 2016;31:1293–313.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Roberto López Blanco
    • 1
    • 2
  • Álvaro Sánchez Ferro
    • 3
    • 4
    Email author
  1. 1.Healthcare Research Institute, Hospital Universitario 12 de OctubreMadridSpain
  2. 2.Neurology Department, Hospital Universitario Príncipe de AsturiasAlcalá de Henares, MadridSpain
  3. 3.Centro Integral de Neurociencias A.C.Móstoles, MadridSpain
  4. 4.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations