Sona A, Ellis KA, Ames D. Rapid cognitive decline in Alzheimer’s disease: a literature review. Int Rev Psychiatry. 2013;25(6):650–8.
CrossRef
PubMed
Google Scholar
Levenson RW, Sturm VE, Haase CM. Emotional and behavioral symptoms in neurodegenerative disease: a model for studying the neural bases of psychopathology. Ann Rev Clin Psychol. 2014;10:581–606.
CrossRef
Google Scholar
Šimić G, Babić Leko M, Wray S, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38. https://doi.org/10.1016/j.pneurobio.2016.04.001.
CAS
CrossRef
PubMed
Google Scholar
Šimić G, Gnjidić M, Kostović I. Cytoskeletal changes as an alternative view on pathogenesis of Alzheimer’s disease. Period Biol. 1998;100:165–73.
Google Scholar
Gouras GK, Tampellini D, Takahashi RH, et al. Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol. 2010;119(5):523–41.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Armstrong RA. What causes Alzheimer’s disease? Folia Neuropathol. 2013;51(3):169–88.
CAS
CrossRef
PubMed
Google Scholar
Esmaeli-Azad B, McCarty JH, Feinstein SC. Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J Cell Sci. 1994;107(Pt 4):869–79.
CAS
PubMed
Google Scholar
Choi MC, Raviv U, Miller HP, et al. Human microtubule-associated-protein tau regulates the number of protofilaments in microtubules: a synchrotron x-ray scattering study. Biophys J. 2009;97(2):519–27.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Šimić G, Stanić G, Mladinov M, et al. Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol. 2009;35(6):532–54.
CrossRef
PubMed Central
PubMed
Google Scholar
Šimić G, Babić Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016;6(1):6.
CrossRef
PubMed Central
PubMed
Google Scholar
Buée L, Bussière T, Buée-Scherrer V, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000;33:95–130.
CrossRef
PubMed
Google Scholar
Alonso A, Zaidi T, Novak M, et al. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A. 2001;98(12):6923–8.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663–72.
CAS
CrossRef
PubMed
Google Scholar
Iqbal K, Liu F, Gong CX, et al. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010;7(8):656–64.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Khatoon S, Grundke-Iqbal I, Iqbal K. Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett. 1994;351(1):80–4.
CAS
CrossRef
PubMed
Google Scholar
Avila J. Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett. 2006;580:2922–7.
CAS
CrossRef
PubMed
Google Scholar
Poppek D, Keck S, Ermak G, et al. Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem J. 2006;400(3):511–20.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Morishima-Kawashima M, Hasegawa M, Takio K, et al. Proline-directed and non-proline directed phosphorylation of PHF-tau. J Biol Chem. 1995;270:823–9.
CAS
CrossRef
PubMed
Google Scholar
Martin L, Latypova X, Wilson CM, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev. 2013;12:289–309.
CAS
CrossRef
PubMed
Google Scholar
Beharry C, Cohen LS, Di J, et al. Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull. 2014;30(2):346–58.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem. 2008;104(6):1433–9.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Lei P, Ayton S, Bush AI, et al. GSK-3 in neurodegenerative diseases. Int J Alzheimers Dis. 2011;2011:189246.
PubMed
PubMed Central
Google Scholar
Jazvinšćak Jembrek M, Babić M, Pivac N, et al. Hyperphosphorylation of tau by GSK-3𝛽 in Alzheimer’s disease: the interaction of A𝛽 and sphingolipid mediators as a therapeutic target. Transl Neurosci. 2013;4(4):466–76.
Google Scholar
Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci. 2004;117(Pt 24):5721–9.
CAS
CrossRef
PubMed
Google Scholar
Götz J, Gladbach A, Pennanen L, et al. Animal models reveal role for tau phosphorylation in human disease. Biochim Biophys Acta. 2010;1802(10):860–71.
CrossRef
PubMed
Google Scholar
Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009;15(3):112–9.
CAS
CrossRef
PubMed
Google Scholar
Iqbal K, Liu F, Gong CX, et al. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 2009;118(1):53–69.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Voronkov M, Braithwaite SP, Stock JB. Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer’s disease. Future Med Chem. 2011;3(7):821–33.
CAS
CrossRef
PubMed
Google Scholar
Braithwaite SP, Stock JB, Lombroso PJ, et al. Protein phosphatases and Alzheimer’s disease. Prog Mol Biol Transl Sci. 2012;106:343–79.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Zhang Y, Ma R-H, Li X-C, et al. Silencing I2PP2A rescues tau pathologies and memory deficits through rescuing PP2A and inhibiting GSK-3β signaling in human tau transgenic mice. Front Aging Neurosci. 2014;6:123.
PubMed
PubMed Central
Google Scholar
Bonda DJ, Wang X, Perry G, et al. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology. 2010;59(4–5):290–4.
CAS
CrossRef
PubMed
Google Scholar
Axelsen PH, Komatsu H, Murray IV. Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology (Bethesda). 2011;26(1):54–69.
CAS
Google Scholar
Jazvinšćak Jembrek M, Hof PR, Šimić G. Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxid Med Cell Longev. 2015;2015:346783.
CrossRef
PubMed Central
PubMed
Google Scholar
Šimić G, Šešo-Šimić Đ, Lucassen PJ, et al. Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig Hoffmann disease. J Neuropathol Exp Neurol. 2000;59:398–407.
CrossRef
PubMed
Google Scholar
Liu D, Xu Y. p53, oxidative stress, and aging. Antioxid Redox Signal. 2011;15(6):1669–78.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Miller FD, Pozniak CD, Walsh GS. Neuronal life and death: an essential role for the p53 family. Cell Death Differ. 2000;7(10):880–8.
CAS
CrossRef
PubMed
Google Scholar
Šimić G, Lucassen PJ, Krsnik Ž, et al. nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer’s disease. Exp Neurol. 2000;165:12–26.
CrossRef
PubMed
Google Scholar
Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun. 2005;331(3):761–77.
CAS
CrossRef
PubMed
Google Scholar
Plesnila N, von Baumgarten L, Retiounskaia M, et al. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ. 2007;14(8):1529–41.
CAS
CrossRef
PubMed
Google Scholar
Engel T, Tanaka K, Jimenez-Mateos EM, et al. Loss of p53 results in protracted electrographic seizures and development of an aggravated epileptic phenotype following status epilepticus. Cell Death Dis. 2010;1(10):e79.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11(3):577–90.
CAS
CrossRef
PubMed
Google Scholar
Diana A, Šimić G, Sinforiani E, et al. Mitochondria morphology and DNA content upon sublethal exposure to beta-amyloid1-42 peptide. Coll Antropol. 2008;32(Suppl 1):51–8.
CAS
PubMed
Google Scholar
Gilman CP, Chan SL, Guo Z, et al. p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. Neuromol Med. 2003;3(3):159–72.
CAS
CrossRef
Google Scholar
Morrison RS, Kinoshita Y, Johnson MD, et al. p53-dependent cell death signaling in neurons. Neurochem Res. 2003;28(1):15–27.
CAS
CrossRef
PubMed
Google Scholar
Stanga S, Lanni C, Govoni S, et al. Unfolded p53 in the pathogenesis of Alzheimer’s disease: is HIPK2 the link? Aging (Albany NY). 2010;2(9):545–54.
CAS
CrossRef
Google Scholar
Hooper C, Meimaridou E, Tavassoli M, et al. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett. 2007;418(1):34–7.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Khoury MP, Bourdon JC. p53 isoforms: an intracellular microprocessor? Genes Cancer. 2011;2(4):453–65.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Pehar M, Ko MH, Li M, et al. P44, the “longevity-assurance” isoform of P53, regulates tau phosphorylation and is activated in an age-dependent fashion. Aging Cell. 2014;13(3):449–56.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Tedeschi A, Di Giovanni S. The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep. 2009;10(6):576–83.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Ferreira A, Kosik KS. Accelerated neuronal differentiation induced by p53 suppression. J Cell Sci. 1996;109(Pt 6):1509–16.
CAS
PubMed
Google Scholar
Qin Q, Baudry M, Liao G, et al. A novel function for p53: regulation of growth cone motility through interaction with Rho kinase. J Neurosci. 2009;29(16):5183–92.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Eizenberg O, Faber-Elman A, Gottlieb E, et al. p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol Cell Biol. 1996;16(9):5178–85.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Merlo P, Frost B, Peng S, et al. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci U S A. 2014;111(50):18055–60.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Di Giovanni S, Rathore K. p53-Dependent pathways in neurite outgrowth and axonal regeneration. Cell Tissue Res. 2012;349(1):87–95.
CAS
CrossRef
PubMed
Google Scholar
Tedeschi A, Nguyen T, Puttagunta R, et al. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ. 2008;16(4):543–54.
CrossRef
PubMed
Google Scholar
Di Giovanni S, Knights CD, Rao M, et al. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J. 2006;25(17):4084–96.
CrossRef
PubMed Central
PubMed
Google Scholar
de la Monte SM, Sohn YK, Wands JR. Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J Neurol Sci. 1997;152(1):73–83.
CrossRef
PubMed
Google Scholar
Ohyagi Y, Asahara H, Chui DH, et al. Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J. 2005;19(2):255–7.
CAS
CrossRef
PubMed
Google Scholar
Lanni C, Racchi M, Mazzini G, et al. Conformationally altered p53: a novel Alzheimer’s disease marker? Mol Psychiatry. 2008;13:641–7.
CAS
CrossRef
PubMed
Google Scholar
Lanni C, Racchi M, Stanga S, et al. Unfolded p53 in blood as a predictive signature of the transition from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis. 2010;20:97–104.
CAS
CrossRef
PubMed
Google Scholar
Uberti D, Carsana T, Bernardi E, et al. Selective impairment of p53-mediated cell death in fibroblasts from sporadic Alzheimer’s disease patients. J Cell Sci. 2002;115:3131–8.
CAS
PubMed
Google Scholar
Uberti D, Lanni C, Carsana T, et al. Identification of a mutant-like conformation of p53 in fibroblasts from sporadic Alzheimer’s disease patients. Neurobiol Aging. 2006;27:1193–201.
CAS
CrossRef
PubMed
Google Scholar
Watcharasit P, Bijur GN, Song L, et al. Glycogen synthase kinase-3β (GSK3β) binds to and promotes the actions of p53. J Biol Chem. 2003;278(49):48872–9.
CAS
CrossRef
PubMed
Google Scholar
Watcharasit P, Bijur GN, Zmijewski JW, et al. Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage. Proc Natl Acad Sci U S A. 2002;99(12):7951–5.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Wang HH, Li HL, Liu R, et al. Tau overexpression inhibits cell apoptosis with the mechanisms involving multiple viability-related factors. J Alzheimers Dis. 2010;21(1):167–79.
CAS
CrossRef
PubMed
Google Scholar
Kulikov R, Boehme KA, Blattner C. Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol Cell Biol. 2005;25(16):7170–80.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Proctor CJ, Gray DA. GSK3 and p53—is there a link in Alzheimer’s disease? Mol Neurodegener. 2010;5:7.
CrossRef
PubMed Central
PubMed
Google Scholar
Terwel D, Muyllaert D, Dewachter I, et al. Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. Am J Pathol. 2008;172(3):786–98.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Huang HC, Jiang ZF. Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis. 2009;16(1):15–27.
CAS
CrossRef
PubMed
Google Scholar
Pehar M, O’Riordan KJ, Burns-Cusato M, et al. Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death. Aging Cell. 2010;9(2):174–90.
CAS
CrossRef
PubMed
Google Scholar
Rushworth JV, Hooper NM. Lipid rafts: linking Alzheimer’s amyloid-β production, aggregation, and toxicity at neuronal membranes. Int J Alzheimers Dis. 2011;2011:603052.
Google Scholar
Chabrier MA, Blurton-Jones M, Agazaryan AA, et al. Soluble Aβ promotes wild-type tau pathology in vivo. J Neurosci. 2012;32(48):17345–50.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Hefti F, Goure WF, Jerecic J, et al. The case for soluble Aβ oligomers as a drug target in Alzheimer’s disease. Trends Pharmacol Sci. 2013;34(5):261–6.
CAS
CrossRef
PubMed
Google Scholar
Xu X, Yang D, Wyss-Coray T, et al. Wild-type but not Alzheimer-mutant amyloid precursor protein confers resistance against p53-mediated apoptosis. Proc Natl Acad Sci U S A. 1999;96(13):7547–52.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Nery LR, Eltz NS, Hackman C, et al. Brain intraventricular injection of amyloid-β in zebrafish embryo impairs cognition and increases tau phosphorylation, effects reversed by lithium. PLoS One. 2014;9(9):e105862.
CrossRef
PubMed Central
PubMed
Google Scholar
Resende R, Ferreiro E, Pereira C, et al. ER stress is involved in Aβ-induced GSK-3β activation and tau phosphorylation. J Neurosci Res. 2008;86:2091–9.
CAS
CrossRef
PubMed
Google Scholar
Takashima A, Murayama M, Murayama O, et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc Natl Acad Sci U S A. 1998;95(16):9637–41.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Magdesian MH, Carvalho MMVF, Mendes FA, et al. Amyloid-β binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/β-catenin signaling. J Biol Chem. 2008;283(14):9359–68.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Magrané J, Rosen KM, Smith RC, et al. Intraneuronal β-amyloid expression downregulates the Akt survival pathway and blunts the stress response. J Neurosci. 2005;25(47):10960–9.
CrossRef
PubMed Central
PubMed
Google Scholar
Akhter R, Sanphui P, Biswas SC. The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem. 2014;289(15):10812–22.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Liu GP, Wei W, Zhou X, et al. I(2)(PP2A) regulates p53 and Akt correlatively and leads the neurons to abort apoptosis. Neurobiol Aging. 2012;33(2):254–64.
CrossRef
PubMed
Google Scholar
Jo J, Whitcomb DJ, Olsen KM, et al. Aβ(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nat Neurosci. 2011;14(5):545–7.
CAS
CrossRef
PubMed
Google Scholar
Dislich B, Lichtenthaler SF. The membrane-bound aspartyl protease BACE1: molecular and functional properties in Alzheimer’s disease and beyond. Front Physiol. 2012;3:8.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Ozaki T, Li Y, Kikuchi H, et al. The intracellular domain of the amyloid precursor protein (AICD) enhances the p53-mediated apoptosis. Biochem Biophys Res Commun. 2006;351(1):57–63.
CAS
CrossRef
PubMed
Google Scholar
Kim HS, Kim EM, Lee JP, et al. C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3β expression. FASEB J. 2003;17(13):1951–3.
CAS
CrossRef
PubMed
Google Scholar
Rabinovich-Nikitin I, Solomon B. Inhibition of amyloid precursor protein processing leads to downregulation of apoptotic genes in Alzheimer’s disease animal models. Neurodegener Dis. 2014;13(2–3):107–9.
CAS
PubMed
Google Scholar
Maier B, Gluba W, Bernier B, et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004;18:306–19.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar
Li M, Pehar M, Liu Y, et al. The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a short isoform of p53, through an IRES-dependent mechanism. Neurobiol Aging. 2015;36(10):2725–36.
CAS
CrossRef
PubMed Central
PubMed
Google Scholar