Advertisement

The Role of p53 in Alzheimer’s Disease: Impact on Tau Pathology

  • Maja Jazvinšćak Jembrek
  • Katy Newberg
  • Goran Šimić
Chapter

Abstract

Tau, a microtubule-associated protein with multiple phosphorylation sites, regulates microtubule assembly and dynamics. The presence of neurofibrillary tangles (NFT), consisting of intracellular aggregates of hyperphosphorylated tau protein, is one of the defining clinico-pathological hallmarks of Alzheimer’s disease (AD). Enhanced expression of transcription factor p53 is also found in brain tissue of AD patients. Although p53 is mainly involved in DNA damage response, apoptosis, and senescence, it exerts a much broader repertoire of cellular functions including promotion of axonal outgrowth and differentiation of progenitor cells to neuronal phenotype. Over time, pathologically enhanced expression of p53 might promote sustained tau hyperphosphorylation, contributing to the formation of NFT and ultimately neuronal death. Glycogen synthase kinase-3β (GSK-3β), the principal tau kinase, interacts with p53 and promotes its transcriptional and non-transcriptional mode of action. In this chapter, current knowledge of p53/GSK-3β/tau interplay in AD is briefly summarized. A deeper understanding of these interactions may shed new light on the pathological mechanisms underlying AD and could lead to novel therapies to combat this devastating disease.

Keywords

Alzheimer disease Tau p53 GSK-3β Apoptosis Neurodegeneration 

References

  1. 1.
    Sona A, Ellis KA, Ames D. Rapid cognitive decline in Alzheimer’s disease: a literature review. Int Rev Psychiatry. 2013;25(6):650–8.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Levenson RW, Sturm VE, Haase CM. Emotional and behavioral symptoms in neurodegenerative disease: a model for studying the neural bases of psychopathology. Ann Rev Clin Psychol. 2014;10:581–606.CrossRefGoogle Scholar
  3. 3.
    Šimić G, Babić Leko M, Wray S, et al. Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol. 2017;151:101–38.  https://doi.org/10.1016/j.pneurobio.2016.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Šimić G, Gnjidić M, Kostović I. Cytoskeletal changes as an alternative view on pathogenesis of Alzheimer’s disease. Period Biol. 1998;100:165–73.Google Scholar
  5. 5.
    Gouras GK, Tampellini D, Takahashi RH, et al. Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease. Acta Neuropathol. 2010;119(5):523–41.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Armstrong RA. What causes Alzheimer’s disease? Folia Neuropathol. 2013;51(3):169–88.CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Esmaeli-Azad B, McCarty JH, Feinstein SC. Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J Cell Sci. 1994;107(Pt 4):869–79.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Choi MC, Raviv U, Miller HP, et al. Human microtubule-associated-protein tau regulates the number of protofilaments in microtubules: a synchrotron x-ray scattering study. Biophys J. 2009;97(2):519–27.CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Šimić G, Stanić G, Mladinov M, et al. Does Alzheimer’s disease begin in the brainstem? Neuropathol Appl Neurobiol. 2009;35(6):532–54.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Šimić G, Babić Leko M, Wray S, et al. Tau protein hyperphosphorylation and aggregation in Alzheimer’s disease and other tauopathies, and possible neuroprotective strategies. Biomolecules. 2016;6(1):6.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Buée L, Bussière T, Buée-Scherrer V, et al. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000;33:95–130.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Alonso A, Zaidi T, Novak M, et al. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc Natl Acad Sci U S A. 2001;98(12):6923–8.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ballatore C, Lee VM, Trojanowski JQ. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci. 2007;8(9):663–72.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Iqbal K, Liu F, Gong CX, et al. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010;7(8):656–64.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Khatoon S, Grundke-Iqbal I, Iqbal K. Levels of normal and abnormally phosphorylated tau in different cellular and regional compartments of Alzheimer disease and control brains. FEBS Lett. 1994;351(1):80–4.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Avila J. Tau phosphorylation and aggregation in Alzheimer’s disease pathology. FEBS Lett. 2006;580:2922–7.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Poppek D, Keck S, Ermak G, et al. Phosphorylation inhibits turnover of the tau protein by the proteasome: influence of RCAN1 and oxidative stress. Biochem J. 2006;400(3):511–20.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Morishima-Kawashima M, Hasegawa M, Takio K, et al. Proline-directed and non-proline directed phosphorylation of PHF-tau. J Biol Chem. 1995;270:823–9.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Martin L, Latypova X, Wilson CM, et al. Tau protein kinases: involvement in Alzheimer’s disease. Ageing Res Rev. 2013;12:289–309.CrossRefGoogle Scholar
  20. 20.
    Beharry C, Cohen LS, Di J, et al. Tau-induced neurodegeneration: mechanisms and targets. Neurosci Bull. 2014;30(2):346–58.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hooper C, Killick R, Lovestone S. The GSK3 hypothesis of Alzheimer’s disease. J Neurochem. 2008;104(6):1433–9.CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Lei P, Ayton S, Bush AI, et al. GSK-3 in neurodegenerative diseases. Int J Alzheimers Dis. 2011;2011:189246.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Jazvinšćak Jembrek M, Babić M, Pivac N, et al. Hyperphosphorylation of tau by GSK-3𝛽 in Alzheimer’s disease: the interaction of A𝛽 and sphingolipid mediators as a therapeutic target. Transl Neurosci. 2013;4(4):466–76.Google Scholar
  24. 24.
    Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci. 2004;117(Pt 24):5721–9.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Götz J, Gladbach A, Pennanen L, et al. Animal models reveal role for tau phosphorylation in human disease. Biochim Biophys Acta. 2010;1802(10):860–71.CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009;15(3):112–9.CrossRefGoogle Scholar
  27. 27.
    Iqbal K, Liu F, Gong CX, et al. Mechanisms of tau-induced neurodegeneration. Acta Neuropathol. 2009;118(1):53–69.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Voronkov M, Braithwaite SP, Stock JB. Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer’s disease. Future Med Chem. 2011;3(7):821–33.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Braithwaite SP, Stock JB, Lombroso PJ, et al. Protein phosphatases and Alzheimer’s disease. Prog Mol Biol Transl Sci. 2012;106:343–79.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Zhang Y, Ma R-H, Li X-C, et al. Silencing I2PP2A rescues tau pathologies and memory deficits through rescuing PP2A and inhibiting GSK-3β signaling in human tau transgenic mice. Front Aging Neurosci. 2014;6:123.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Bonda DJ, Wang X, Perry G, et al. Oxidative stress in Alzheimer disease: a possibility for prevention. Neuropharmacology. 2010;59(4–5):290–4.CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Axelsen PH, Komatsu H, Murray IV. Oxidative stress and cell membranes in the pathogenesis of Alzheimer’s disease. Physiology (Bethesda). 2011;26(1):54–69.Google Scholar
  33. 33.
    Jazvinšćak Jembrek M, Hof PR, Šimić G. Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxid Med Cell Longev. 2015;2015:346783.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Šimić G, Šešo-Šimić Đ, Lucassen PJ, et al. Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig Hoffmann disease. J Neuropathol Exp Neurol. 2000;59:398–407.CrossRefGoogle Scholar
  35. 35.
    Liu D, Xu Y. p53, oxidative stress, and aging. Antioxid Redox Signal. 2011;15(6):1669–78.CrossRefPubMedCentralGoogle Scholar
  36. 36.
    Miller FD, Pozniak CD, Walsh GS. Neuronal life and death: an essential role for the p53 family. Cell Death Differ. 2000;7(10):880–8.CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Šimić G, Lucassen PJ, Krsnik Ž, et al. nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer’s disease. Exp Neurol. 2000;165:12–26.CrossRefGoogle Scholar
  38. 38.
    Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun. 2005;331(3):761–77.CrossRefGoogle Scholar
  39. 39.
    Plesnila N, von Baumgarten L, Retiounskaia M, et al. Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ. 2007;14(8):1529–41.CrossRefGoogle Scholar
  40. 40.
    Engel T, Tanaka K, Jimenez-Mateos EM, et al. Loss of p53 results in protracted electrographic seizures and development of an aggravated epileptic phenotype following status epilepticus. Cell Death Dis. 2010;1(10):e79.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Mihara M, Erster S, Zaika A, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell. 2003;11(3):577–90.CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Diana A, Šimić G, Sinforiani E, et al. Mitochondria morphology and DNA content upon sublethal exposure to beta-amyloid1-42 peptide. Coll Antropol. 2008;32(Suppl 1):51–8.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Gilman CP, Chan SL, Guo Z, et al. p53 is present in synapses where it mediates mitochondrial dysfunction and synaptic degeneration in response to DNA damage, and oxidative and excitotoxic insults. Neuromol Med. 2003;3(3):159–72.CrossRefGoogle Scholar
  44. 44.
    Morrison RS, Kinoshita Y, Johnson MD, et al. p53-dependent cell death signaling in neurons. Neurochem Res. 2003;28(1):15–27.CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Stanga S, Lanni C, Govoni S, et al. Unfolded p53 in the pathogenesis of Alzheimer’s disease: is HIPK2 the link? Aging (Albany NY). 2010;2(9):545–54.CrossRefGoogle Scholar
  46. 46.
    Hooper C, Meimaridou E, Tavassoli M, et al. p53 is upregulated in Alzheimer’s disease and induces tau phosphorylation in HEK293a cells. Neurosci Lett. 2007;418(1):34–7.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Khoury MP, Bourdon JC. p53 isoforms: an intracellular microprocessor? Genes Cancer. 2011;2(4):453–65.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Pehar M, Ko MH, Li M, et al. P44, the “longevity-assurance” isoform of P53, regulates tau phosphorylation and is activated in an age-dependent fashion. Aging Cell. 2014;13(3):449–56.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Tedeschi A, Di Giovanni S. The non-apoptotic role of p53 in neuronal biology: enlightening the dark side of the moon. EMBO Rep. 2009;10(6):576–83.CrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ferreira A, Kosik KS. Accelerated neuronal differentiation induced by p53 suppression. J Cell Sci. 1996;109(Pt 6):1509–16.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Qin Q, Baudry M, Liao G, et al. A novel function for p53: regulation of growth cone motility through interaction with Rho kinase. J Neurosci. 2009;29(16):5183–92.CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Eizenberg O, Faber-Elman A, Gottlieb E, et al. p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells. Mol Cell Biol. 1996;16(9):5178–85.CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Merlo P, Frost B, Peng S, et al. p53 prevents neurodegeneration by regulating synaptic genes. Proc Natl Acad Sci U S A. 2014;111(50):18055–60.CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Di Giovanni S, Rathore K. p53-Dependent pathways in neurite outgrowth and axonal regeneration. Cell Tissue Res. 2012;349(1):87–95.CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Tedeschi A, Nguyen T, Puttagunta R, et al. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ. 2008;16(4):543–54.CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Di Giovanni S, Knights CD, Rao M, et al. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J. 2006;25(17):4084–96.CrossRefPubMedCentralGoogle Scholar
  57. 57.
    de la Monte SM, Sohn YK, Wands JR. Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer’s disease. J Neurol Sci. 1997;152(1):73–83.CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Ohyagi Y, Asahara H, Chui DH, et al. Intracellular Abeta42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer’s disease. FASEB J. 2005;19(2):255–7.CrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lanni C, Racchi M, Mazzini G, et al. Conformationally altered p53: a novel Alzheimer’s disease marker? Mol Psychiatry. 2008;13:641–7.CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lanni C, Racchi M, Stanga S, et al. Unfolded p53 in blood as a predictive signature of the transition from mild cognitive impairment to Alzheimer’s disease. J Alzheimers Dis. 2010;20:97–104.CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Uberti D, Carsana T, Bernardi E, et al. Selective impairment of p53-mediated cell death in fibroblasts from sporadic Alzheimer’s disease patients. J Cell Sci. 2002;115:3131–8.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Uberti D, Lanni C, Carsana T, et al. Identification of a mutant-like conformation of p53 in fibroblasts from sporadic Alzheimer’s disease patients. Neurobiol Aging. 2006;27:1193–201.CrossRefPubMedCentralGoogle Scholar
  63. 63.
    Watcharasit P, Bijur GN, Song L, et al. Glycogen synthase kinase-3β (GSK3β) binds to and promotes the actions of p53. J Biol Chem. 2003;278(49):48872–9.CrossRefPubMedCentralGoogle Scholar
  64. 64.
    Watcharasit P, Bijur GN, Zmijewski JW, et al. Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage. Proc Natl Acad Sci U S A. 2002;99(12):7951–5.CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Wang HH, Li HL, Liu R, et al. Tau overexpression inhibits cell apoptosis with the mechanisms involving multiple viability-related factors. J Alzheimers Dis. 2010;21(1):167–79.CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kulikov R, Boehme KA, Blattner C. Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol Cell Biol. 2005;25(16):7170–80.CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Proctor CJ, Gray DA. GSK3 and p53—is there a link in Alzheimer’s disease? Mol Neurodegener. 2010;5:7.CrossRefPubMedCentralGoogle Scholar
  68. 68.
    Terwel D, Muyllaert D, Dewachter I, et al. Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice. Am J Pathol. 2008;172(3):786–98.CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Huang HC, Jiang ZF. Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease. J Alzheimers Dis. 2009;16(1):15–27.CrossRefPubMedCentralGoogle Scholar
  70. 70.
    Pehar M, O’Riordan KJ, Burns-Cusato M, et al. Altered longevity-assurance activity of p53:p44 in the mouse causes memory loss, neurodegeneration and premature death. Aging Cell. 2010;9(2):174–90.CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Rushworth JV, Hooper NM. Lipid rafts: linking Alzheimer’s amyloid-β production, aggregation, and toxicity at neuronal membranes. Int J Alzheimers Dis. 2011;2011:603052.Google Scholar
  72. 72.
    Chabrier MA, Blurton-Jones M, Agazaryan AA, et al. Soluble Aβ promotes wild-type tau pathology in vivo. J Neurosci. 2012;32(48):17345–50.CrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hefti F, Goure WF, Jerecic J, et al. The case for soluble Aβ oligomers as a drug target in Alzheimer’s disease. Trends Pharmacol Sci. 2013;34(5):261–6.CrossRefPubMedCentralGoogle Scholar
  74. 74.
    Xu X, Yang D, Wyss-Coray T, et al. Wild-type but not Alzheimer-mutant amyloid precursor protein confers resistance against p53-mediated apoptosis. Proc Natl Acad Sci U S A. 1999;96(13):7547–52.CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Nery LR, Eltz NS, Hackman C, et al. Brain intraventricular injection of amyloid-β in zebrafish embryo impairs cognition and increases tau phosphorylation, effects reversed by lithium. PLoS One. 2014;9(9):e105862.CrossRefPubMedCentralGoogle Scholar
  76. 76.
    Resende R, Ferreiro E, Pereira C, et al. ER stress is involved in Aβ-induced GSK-3β activation and tau phosphorylation. J Neurosci Res. 2008;86:2091–9.CrossRefPubMedCentralGoogle Scholar
  77. 77.
    Takashima A, Murayama M, Murayama O, et al. Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau. Proc Natl Acad Sci U S A. 1998;95(16):9637–41.CrossRefPubMedCentralGoogle Scholar
  78. 78.
    Magdesian MH, Carvalho MMVF, Mendes FA, et al. Amyloid-β binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/β-catenin signaling. J Biol Chem. 2008;283(14):9359–68.CrossRefPubMedCentralGoogle Scholar
  79. 79.
    Magrané J, Rosen KM, Smith RC, et al. Intraneuronal β-amyloid expression downregulates the Akt survival pathway and blunts the stress response. J Neurosci. 2005;25(47):10960–9.CrossRefPubMedCentralGoogle Scholar
  80. 80.
    Akhter R, Sanphui P, Biswas SC. The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem. 2014;289(15):10812–22.CrossRefPubMedCentralGoogle Scholar
  81. 81.
    Liu GP, Wei W, Zhou X, et al. I(2)(PP2A) regulates p53 and Akt correlatively and leads the neurons to abort apoptosis. Neurobiol Aging. 2012;33(2):254–64.CrossRefPubMedCentralGoogle Scholar
  82. 82.
    Jo J, Whitcomb DJ, Olsen KM, et al. Aβ(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nat Neurosci. 2011;14(5):545–7.CrossRefPubMedCentralGoogle Scholar
  83. 83.
    Dislich B, Lichtenthaler SF. The membrane-bound aspartyl protease BACE1: molecular and functional properties in Alzheimer’s disease and beyond. Front Physiol. 2012;3:8.CrossRefPubMedCentralGoogle Scholar
  84. 84.
    Ozaki T, Li Y, Kikuchi H, et al. The intracellular domain of the amyloid precursor protein (AICD) enhances the p53-mediated apoptosis. Biochem Biophys Res Commun. 2006;351(1):57–63.CrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kim HS, Kim EM, Lee JP, et al. C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3β expression. FASEB J. 2003;17(13):1951–3.CrossRefPubMedCentralGoogle Scholar
  86. 86.
    Rabinovich-Nikitin I, Solomon B. Inhibition of amyloid precursor protein processing leads to downregulation of apoptotic genes in Alzheimer’s disease animal models. Neurodegener Dis. 2014;13(2–3):107–9.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Maier B, Gluba W, Bernier B, et al. Modulation of mammalian life span by the short isoform of p53. Genes Dev. 2004;18:306–19.CrossRefPubMedCentralGoogle Scholar
  88. 88.
    Li M, Pehar M, Liu Y, et al. The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a short isoform of p53, through an IRES-dependent mechanism. Neurobiol Aging. 2015;36(10):2725–36.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Maja Jazvinšćak Jembrek
    • 1
    • 2
  • Katy Newberg
    • 3
  • Goran Šimić
    • 3
  1. 1.Laboratory for Molecular Neuropharmacology, Division of Molecular MedicineRuđer Bošković InstituteZagrebCroatia
  2. 2.Department of PsychologyCatholic University of CroatiaZagrebCroatia
  3. 3.Department for NeuroscienceCroatian Institute for Brain Research, University of Zagreb Medical SchoolZagrebCroatia

Personalised recommendations