Advertisement

Use of Herbal Products/Alternative Medicines in Neurodegenerative Diseases (Alzheimer’s Disease and Parkinson’s Disease)

  • Omar M. E. Abdel-Salam
Chapter

Abstract

With increasingly aging population there is an increase in the incidence of age-related neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease. And despite the advent of many drugs that helped to ease the life of patients suffering from these disorders, there is yet no cure. In recent years, there has been a growing interest in the use of botanicals and dietary supplements to treat neurodegenerative diseases. Indeed, the use of herbal remedies in these patients is widespread and is on the rise. While the list of these botanicals is long, some of them, e.g., Panax ginseng, Ginkgo biloba, curcumin or their individual biologically active constituents, have been shown to exert neuroprotective effects in experimental animals. Data from epidemiological studies and clinical trials have also suggested clinical benefit of these herbal supplements in delaying or even modifying the neurodegenerative process. Likewise epidemiologic and experimental studies suggest therapeutic potential for such dietary components as tea catechins, coffee as well as dietary polyphenols This chapter discusses the clinical and experimental data suggesting a benefit from these commonly used herbal supplements and dietary components.

Keywords

Catechins Coffee Dietary polyphenols Ginkgo biloba Neurodegeneration Panax ginseng 

References

  1. 1.
    Vieira RT, Caixeta L, Machado S, Silva AC, Nardi AE, Arias-Carrión O, Carta MG. Epidemiology of early-onset dementia: a review of the literature. Clin Pract Epidemiol Ment Health. 2013;9:88–95.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010-2050) estimated using the 2010 census. Neurology. 2013;80:1778–83.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29:1583–90.PubMedCrossRefGoogle Scholar
  4. 4.
    Castellani RJ, Lee HG, Zhu X, Nunomura A, Perry G, Smith MA. Neuropathology of Alzheimer disease: pathognomonic but not pathogenic. Acta Neuropathol. 2006;111:503–9.PubMedCrossRefGoogle Scholar
  5. 5.
    Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55:181–4.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging. 2001;18:685–716.PubMedCrossRefGoogle Scholar
  7. 7.
    Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem. 2010;345:91–104.PubMedCrossRefGoogle Scholar
  8. 8.
    Massaad CA. Neuronal and vascular oxidative stress in Alzheimer’s disease. Curr Neuropharmacol. 2011;9:662–73.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Skovronsky DM, Lee VM, Trojanowski JQ. Neurodegenerative diseases: new concepts of pathogenesis and their therapeutic implications. Annu Rev Pathol. 2006;1:151–70.PubMedCrossRefGoogle Scholar
  10. 10.
    Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM. Inflammation in neurodegenerative diseases--an update. Immunology. 2014;142:151–66.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kovacs GG. Current concepts of neurodegenerative diseases. EMJ Neurol. 2014;1:78–86.Google Scholar
  12. 12.
    Jellinger KA. Recent developments in the pathology of Parkinson’s disease. J Neural Transm Suppl. 2002;62:347–76.CrossRefGoogle Scholar
  13. 13.
    Rascol O, Lozano A, Stern M, Poewe W. Milestones in Parkinson’s disease therapeutics. Mov Disord. 2011;26:1072–82.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Wilkinson DG, Francis PT, Schwam E, Payne-Parrish J. Cholinesterase inhibitors used in the treatment of Alzheimer’s disease: the relationship between pharmacological effects and clinical efficacy. Drugs Aging. 2004;21:453–78.PubMedCrossRefGoogle Scholar
  15. 15.
    Gao X, Cassidy A, Schwarzschild MA, Rimm EB, Ascherio A. Habitual intake of dietary flavonoids and risk of Parkinson disease. Neurology. 2012;78:1138–45.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Alcalay RN, Gu Y, Mejia-Santana H, Cote L, Marder KS, Scarmeas N. The association between Mediterranean diet adherence and Parkinson’s disease. Mov Disord. 2012;27:771–4.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Mancini M, Parfitt VJ, Rubba P. Antioxidants in the Mediterranean diet. Can J Cardiol. 1995;11 Suppl G:105G–9G.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol. 2006;59:912–21.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Frisardi V, Panza F, Seripa D, Imbimbo BP, Vendemiale G, Pilotto A, Solfrizzi V. Nutraceutical properties of Mediterranean diet and cognitive decline: possible underlying mechanisms. J Alzheimers Dis. 2010;22:715–40.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Feart C, Samieri C, Rondeau V, Amieva H, Portet F, Dartigues JF, Scarmeas N, Barberger-Gateau P. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA. 2009;302:638–48.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Scarmeas N, Stern Y, Mayeux R, Manly JJ, Schupf N, Luchsinger JA. Mediterranean diet and mild cognitive impairment. Arch Neurol. 2009;66:216–25.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Olsson E, Karlström B, Kilander L, Byberg L, Cederholm T, Sjögren P. Dietary patterns and cognitive dysfunction in a 12-year follow-up study of 70 year old men. J Alzheimers Dis. 2015;43:109–19.PubMedCrossRefGoogle Scholar
  23. 23.
    Valls-Pedret C, Sala-Vila A, Serra-Mir M, Corella D, de la Torre R, Martínez-González MÁ, Martínez-Lapiscina EH, Fitó M, Pérez-Heras A, Salas-Salvadó J, Estruch R, Ros E. Mediterranean diet and age-related cognitive decline: a randomized clinical trial. JAMA Intern Med. 2015;175:1094–103.PubMedCrossRefGoogle Scholar
  24. 24.
    Skarupski KA, Tangney CC, Li H, Evans DA, Morris MC. Mediterranean diet and depressive symptoms among older adults over time. J Nutr Health Aging. 2013;17:441–5.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Barbosa DS. Green tea polyphenolic compounds and human health. J Verbrauch Lebensm. 2007;2:407–13.CrossRefGoogle Scholar
  26. 26.
    Bansal S, Syan N, Mathur P, Choudhary S. Pharmacological profile of green tea and its polyphenols: a review. Med Chem Res. 2012;21:3347–60.CrossRefGoogle Scholar
  27. 27.
    Warden BA, Smith LS, Beecher GR, Balentine DA, Clevidence BA. Catechins are bioavailable in men and women drinking black tea throughout the day. J Nutr. 2001;131:1731–7.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Chow HH, Cai Y, Alberts DS, Hakim I, Dorr R, Shahi F, Crowell JA, Yang CS, Hara Y. Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol Biomark Prev. 2001;10:53–8.Google Scholar
  29. 29.
    Lee MJ, Maliakal P, Chen L, Meng X, Bondoc FY, Prabhu S, Lambert G, Mohr S, Yang CS. Pharmacokinetics of tea catechins after ingestion of green tea and (−)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability. Cancer Epidemiol Biomark Prev. 2002;11:1025–32.Google Scholar
  30. 30.
    Scholey A, Downey LA, Ciorciari J, Pipingas A, Nolidin K, Finn M, Wines M, Catchlove S, Terrens A, Barlow E, Gordon L, Stough C. Acute neurocognitive effects of epigallocatechin gallate (EGCG). Appetite. 2012;58:767–70.PubMedCrossRefGoogle Scholar
  31. 31.
    Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT Jr, Swanson PD. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol. 2002;155:732–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Tan EK, Tan C, Fook-Chong SM, Lum SY, Chai A, Chung H, Shen H, Zhao Y, Teoh ML, Yih Y, Pavanni R, Chandran VR, Wong MC. Dose-dependent protective effect of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci. 2003;216:163–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Tanaka K, Miyake Y, Fukushima W, Sasaki S, Kiyohara C, Tsuboi Y, Yamada T, Oeda T, Miki T, Kawamura N, Sakae N, Fukuyama H, Hirota Y, Nagai M, the Fukuoka Kinki Parkinson’s Disease Study Group. Intake of Japanese and Chinese teas reduces risk of Parkinson’s disease. Parkinsonism Relat Disord. 2011;17:446–50.PubMedCrossRefGoogle Scholar
  34. 34.
    Kandinov B, Giladi N, Korczyn AD. Smoking and tea consumption delay onset of Parnkinson’s disease. Parkinsonism Relat Disord. 2009;15:41–6.PubMedCrossRefGoogle Scholar
  35. 35.
    Kang KS, Yamabe N, Wen Y, Fukui M, Zhu BT. Beneficial effects of natural phenolics on levodopa methylation and oxidative neurodegeneration. Brain Res. 2013;1497:1–14.PubMedCrossRefGoogle Scholar
  36. 36.
    Frei B, Higdon JV. Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J Nutr. 2003;133:3275S–84S.PubMedCrossRefGoogle Scholar
  37. 37.
    Chan S, Kantham S, Rao VM, Palanivelu MK, Pham HL, Shaw PN, McGeary RP, Ross BP. Metal chelation, radical scavenging and inhibition of Aβ42 fibrillation by food constituents in relation to Alzheimer’s disease. Food Chem. 2016;199:185–94.PubMedCrossRefGoogle Scholar
  38. 38.
    Nie G, Jin C, Cao Y, Shen S, Zhao B. Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch Biochem Biophys. 2002;397:84–90.PubMedCrossRefGoogle Scholar
  39. 39.
    Pan T, Fei J, Zhou X, Jankovic J, Le W. Effects of green tea polyphenols on dopamine uptake and on MPP+ −induced dopamine neuron injury. Life Sci. 2003;72:1073–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen M, Wang T, Yue F, Li X, Wang P, Li Y, Chan P, Yu S. Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral α-synuclein aggregation in MPTP-intoxicated parkinsonian monkeys. Neuroscience. 2015;286:383–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Lee SY, Lee JW, Lee H, Yoo HS, Yun YP, Oh KW, Ha TY, Hong JT. Inhibitory effect of green tea extract on beta-amyloid-induced PC12 cell death by inhibition of the activation of NF-kappaB and ERK/p38 MAP kinase pathway through antioxidant mechanisms. Brain Res Mol Brain Res. 2005;140:45–54.PubMedCrossRefGoogle Scholar
  42. 42.
    Bastianetto S, Yao ZX, Papadopoulos V, Quirion R. Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci. 2006;23:55–64.PubMedCrossRefGoogle Scholar
  43. 43.
    Kim TI, Lee YK, Park SG, Choi IS, Ban JO, Park HK, Nam SY, Yun YW, Han SB, Oh KW, Hong JT. l-Theanine, an amino acid in green tea, attenuates beta-amyloid-induced cognitive dysfunction and neurotoxicity: reduction in oxidative damage and inactivation of ERK/p38 kinase and NF-kappaB pathways. J Alzheimers Dis. 2009;17:661–80.CrossRefGoogle Scholar
  44. 44.
    Lee YJ, Choi DY, Yun YP, Han SB, Oh KW, Hong JT. Epigallocatechin-3-gallate prevents systemic inflammation-induced memory deficiency and amyloidogenesis via its anti-neuroinflammatory properties. Free Radic Biol Med. 2009;47:1601–10.PubMedCrossRefGoogle Scholar
  45. 45.
    Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB, Oh KW, Hong JT. Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. Brain Res. 2009;1250:164–74.PubMedCrossRefGoogle Scholar
  46. 46.
    Rezai-Zadeh K, Arendash GW, Hou H, Fernandez F, Jensen M, Runfeldt M, Shytle RD, Tan J. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008;1214:177–87.PubMedCrossRefGoogle Scholar
  47. 47.
    Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Nutr. 2009;139:1987–93.CrossRefGoogle Scholar
  48. 48.
    Mori T, Rezai-Zadeh K, Koyama N, Arendash GW, Yamaguchi H, Kakuda N, Horikoshi-Sakuraba Y, Tan J, Town T. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem. 2012;287:6912–27.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Lim HJ, Shim SB, Jee SW, Lee SH, Lim CJ, Hong JT, Sheen YY, Hwang DY. Green tea catechin leads to global improvement among Alzheimer’s disease-related phenotypes in NSE/hAPP-C105 Tg mice. J Nutr Biochem. 2013;24:1302–13.PubMedCrossRefGoogle Scholar
  50. 50.
    Lee YK, Yuk DY, Lee JW, Lee SY, Ha TY, Oh KW, Yun YP, Hong JT. Epigallocatechin-3-gallate prevents lipopolysaccharide-induced elevation of beta-amyloid generation and memory deficiency. J Nutr Biochem. 2013;24:298–310.PubMedCrossRefGoogle Scholar
  51. 51.
    Ludwig IA, Clifford MN, Lean ME, Ashihara H, Crozier A. Coffee: biochemistry and potential impact on health. Food Funct. 2014;5:1695–717.PubMedCrossRefGoogle Scholar
  52. 52.
    Nawrot P, Jordan S, Eastwood J, Rotstein J, Hugenholtz A, Feeley M. Effects of caffeine on human health. Food Addit Contam. 2003;20:1–30.PubMedCrossRefGoogle Scholar
  53. 53.
    Higdon JV, Frei B. Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr. 2006;46:101–23.PubMedCrossRefGoogle Scholar
  54. 54.
    Frary CD, Johnson RK, Wang MQ. Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc. 2005;105:110–3.PubMedCrossRefGoogle Scholar
  55. 55.
    Fulgoni VL 3rd, Keast DR, Lieberman HR. Trends in intake and sources of caffeine in the diets of US adults: 2001-2010. Am J Clin Nutr. 2015;101:1081–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Fall PA, Fredrikson M, Axelson O, Granérus AK. Nutritional and occupational factors influencing the risk of Parkinson’s disease: a case-control study in southeastern Sweden. Mov Disord. 1999;14(1):28–37.PubMedCrossRefGoogle Scholar
  57. 57.
    Paganini-Hill A. Risk factors for Parkinson’s disease: the leisure world cohort study. Neuroepidemiology. 2001;20:118–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Ascherio A, Chen H, Schwarzschild MA, Zhang SM, Colditz GA, Speizer FE. Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology. 2003;60:790–5.PubMedCrossRefGoogle Scholar
  59. 59.
    Ascherio A, Weisskopf MG, O'Reilly EJ, McCullough ML, Calle EE, Rodriguez C, Thun MJ. Coffee consumption, gender, and Parkinson’s disease mortality in the cancer prevention study II cohort: the modifying effects of estrogen. Am J Epidemiol. 2004;160:977–84.PubMedCrossRefGoogle Scholar
  60. 60.
    Hancock DB, Martin ER, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK. Smoking, caffeine, and nonsteroidal anti-inflammatory drugs in families with Parkinson disease. Arch Neurol. 2007;64:576–80.PubMedCrossRefGoogle Scholar
  61. 61.
    Hu G, Bidel S, Jousilahti P, Antikainen R, Tuomilehto J. Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord. 2007;22:2242–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Sääksjärvi K, Knekt P, Rissanen H, Laaksonen MA, Reunanen A, Männistö S. Prospective study of coffee consumption and risk of Parkinson’s disease. Eur J Clin Nutr. 2008;62:908–15.PubMedCrossRefGoogle Scholar
  63. 63.
    Skeie GO, Muller B, Haugarvoll K, Larsen JP, Tysnes OB. Differential effect of environmental risk factors on postural instability gait difficulties and tremor dominant Parkinson’s disease. Mov Disord. 2010;25:1847–52.PubMedCrossRefGoogle Scholar
  64. 64.
    Palacios N, Gao X, McCullough ML, Schwarzschild MA, Shah R, Gapstur S, Ascherio A. Caffeine and risk of Parkinson’s disease in a large cohort of men and women. Mov Disord. 2012;27:1276–82.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Liu R, Guo X, Park Y, Huang X, Sinha R, Freedman ND, Hollenbeck AR, Blair A, Chen H. Caffeine intake, smoking, and risk of Parkinson disease in men and women. Am J Epidemiol. 2012;175:1200–7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kenborg L, Lassen CF, Ritz B, Andersen KK, Christensen J, Schernhammer ES, Hansen J, Wermuth L, Rod NH, Olsen JH. Lifestyle, family history, and risk of idiopathic Parkinson disease: a large Danish case-control study. Am J Epidemiol. 2015;181:808–16.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Warren Olanow C, Kieburtz K, Rascol O, Poewe W, Schapira AH, Emre M, Nissinen H, Leinonen M, Stocchi F. Stalevo Reduction in Dyskinesia Evaluation in Parkinson’s Disease (STRIDE-PD) Investigators. Factors predictive of the development of Levodopa-induced dyskinesia and wearing-off in Parkinson’s disease. Mov Disord. 2013;28:1064–71.PubMedCrossRefGoogle Scholar
  68. 68.
    Wills AM, Eberly S, Tennis M, Lang AE, Messing S, Togasaki D, Tanner CM, Kamp C, Chen JF, Oakes D, McDermott MP, Schwarzschild MA; Parkinson Study Group. Caffeine consumption and risk of dyskinesia in CALM-PD. Mov Disord 2013;28:380–383.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Nicoletti A, Zappia M, FRAGAMP Study Group. Coffee consumption and risk of levodopa-induced dyskinesia in Parkinson’s disease: the FRAGAMP study. Mov Disord. 2015;30:1854–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Deleu D, Jacob P, Chand P, Sarre S, Colwell A. Effects of caffeine on levodopa pharmacokinetics and pharmacodynamics in Parkinson disease. Neurology. 2006;67:897–9.PubMedCrossRefGoogle Scholar
  71. 71.
    Fox SH. Non-dopaminergic treatments for motor control in Parkinson’s disease. Drugs. 2013;73:1405–15.PubMedCrossRefGoogle Scholar
  72. 72.
    Haskell CF, Kennedy DO, Wesnes KA, Scholey AB. Cognitive and mood improvements of caffeine in habitual consumers and habitual non-consumers of caffeine. Psychopharmacology. 2005;179:813–25.PubMedCrossRefGoogle Scholar
  73. 73.
    Johnson-Kozlow M, Kritz-Silverstein D, Barrett-Connor E, Morton D. Coffee consumption and cognitive function among older adults. Am J Epidemiol. 2002;156:842–50.PubMedCrossRefGoogle Scholar
  74. 74.
    Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M. Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis. 2009;16:85–91.PubMedCrossRefGoogle Scholar
  75. 75.
    Ritchie K, Carrière I, de Mendonca A, Portet F, Dartigues JF, Rouaud O, Barberger-Gateau P, Ancelin ML. The neuroprotective effects of caffeine: a prospective population study (the Three City Study). Neurology. 2007;69:536–45.CrossRefGoogle Scholar
  76. 76.
    Santos C, Costa J, Santos J, Vaz-Carneiro A, Lunet N. Caffeine intake and dementia: systematic review and meta-analysis. J Alzheimers Dis. 2010;20(Suppl 1):S187–204.PubMedCrossRefGoogle Scholar
  77. 77.
    Vercambre MN, Berr C, Ritchie K, Kang JH. Caffeine and cognitive decline in elderly women at high vascular risk. J Alzheimers Dis. 2013;35:413–21.PubMedCrossRefGoogle Scholar
  78. 78.
    Beiske AG, Loge JH, Hjermstad MJ, Svensson E. Fatigue in Parkinson’s disease: prevalence and associated factors. Mov Disord. 2010;25:2456–60.PubMedCrossRefGoogle Scholar
  79. 79.
    Oguru M, Tachibana H, Toda K, Okuda B, Oka N. Apathy and depression in Parkinson disease. J Geriatr Psychiatry Neurol. 2010;23:35–41.PubMedCrossRefGoogle Scholar
  80. 80.
    Seubert-Ravelo AN, Yáñez-Téllez MG, Salgado-Ceballos H, Escartín-Pérez RE, Neri-Nani GA, Velázquez-Osuna S. Mild cognitive impairment in patients with early-onset Parkinson’s disease. Dement Geriatr Cogn Disord. 2016;42:17–30.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Nuti A, Ceravolo R, Piccinni A, Dell’Agnello G, Bellini G, Gambaccini G, Rossi C, Logi C, Dell’Osso L, Bonuccelli U. Psychiatric comorbidity in a population of Parkinson’s disease patients. Eur J Neurol. 2004;11:315–20.PubMedCrossRefGoogle Scholar
  82. 82.
    Veiga BA, Borges V, Silva SM, Goulart Fde O, Cendoroglo MS, Ferraz HB. Depression in Parkinson’s disease: clinical epidemiological correlates and comparison with a controlled group of non-parkinsonian geriatric patients. Rev Bras Psiquiatr. 2009;31:39–42.PubMedCrossRefGoogle Scholar
  83. 83.
    Postuma RB, Lang AE, Munhoz RP, Charland K, Pelletier A, Moscovich M, Filla L, Zanatta D, Rios Romenets S, Altman R, Chuang R, Shah B. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology. 2012;79:651–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J. Caffeine protects Alzheimer’s mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience. 2006;142:941–52.PubMedCrossRefGoogle Scholar
  85. 85.
    Arendash GW, Mori T, Cao C, Mamcarz M, Runfeldt M, Dickson A, Rezai-Zadeh K, Tane J, Citron BA, Lin X, Echeverria V, Potter H. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer’s disease mice. J Alzheimers Dis. 2009;17:661–80.CrossRefGoogle Scholar
  86. 86.
    Xu K, Xu YH, Chen JF, Schwarzschild MA. Caffeine’s neuroprotection against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity shows no tolerance to chronic caffeine administration in mice. Neurosci Lett. 2002;322:13–6.PubMedCrossRefGoogle Scholar
  87. 87.
    Lee M, McGeer EG, McGeer PL. Quercetin, not caffeine, is a major neuroprotective component in coffee. Neurobiol Aging. 2016;46:113–23.PubMedCrossRefGoogle Scholar
  88. 88.
    Singh S, Singh K, Gupta SP, Patel DK, Singh VK, Singh RK, Singh MP. Effect of caffeine on the expression of cytochrome P450 1A2, adenosine A2A receptor and dopamine transporter in control and 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine treated mouse striatum. Brain Res. 2009;1283:115–26.PubMedCrossRefGoogle Scholar
  89. 89.
    Nocerino E, Amato M, Izzo AA. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia. 2000;71:S1–5.PubMedCrossRefGoogle Scholar
  90. 90.
    Yun TK. Brief introduction of Panax ginseng C.A. Meyer. J Korean Med Sci. 2001;16:53–5.Google Scholar
  91. 91.
    Punja ZK. American ginseng: research developments, opportunities, and challenges. J Ginseng Res. 2011;35:368–74.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Tholpady A, Risin SA. Drug interactions with Ginkgo biloba and Gginseng. In: Dasgupta A, Hammett-Stabler CA, editors. Herbal supplements: efficacy, toxicity, interactions with Western drugs, and effects on clinical laboratory tests. New York: John Wiley & Sons, Inc.; 2011. p. 321–31.Google Scholar
  93. 93.
    Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod. 2000;63:1702–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Leung KW. Pharmacology of ginsenosides. In: Ramawat KG, Mérillon JM, editors. Natural products. Berlin: Springer; 2013. p. 3497–514.CrossRefGoogle Scholar
  95. 95.
    Wang T, Guo R, Zhou G, Zhou X, Kou Z, Sui F, Li C, Tang L, Wang Z. Traditional uses, botany, phytochemistry, pharmacology and toxicology of Panax notoginseng (Burk.) F.H. Chen: a review. J Ethnopharmacol. 2016;188:234–58.PubMedCrossRefGoogle Scholar
  96. 96.
    Persson J, Bringlöv E, Nilsson LG, Nyberg L. The memory-enhancing effects of Ginseng and Ginkgo biloba in healthy volunteers. Psychopharmacology. 2004;172:430–4.PubMedCrossRefGoogle Scholar
  97. 97.
    Harkey MR, Henderson GL, Gershwin ME, Stern JS, Hackman RM. Variability in commercial ginseng products: an analysis of 25 preparations. Am J Clin Nutr. 2001;73:1101–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Wesnes KA, Ward T, McGinty A, Petrini O. The memory enhancing effects of a Ginkgo biloba/Panax ginseng combination in healthy middle-aged volunteers. Psychopharmacology. 2000;152:353–61.PubMedCrossRefGoogle Scholar
  99. 99.
    Kennedy DO, Scholey AB, Wesnes KA. Modulation of cognition and mood following administration of single doses of Ginkgo biloba, ginseng, and a ginkgo/ginseng combination to healthy young adults. Physiol Behav. 2002;75:739–51.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Sünram-Lea SI, Birchall R, Wesnes KA, Petrini O. The effect of acute administration of 400mg of Panax ginseng on cognitive performance and mood in healthy young volunteers. Curr Top Nutraceutical Res. 2005;3:65–74.Google Scholar
  101. 101.
    Sutherland SK, Purdon SE, Lai CT, Wang LJ, Liu GZ, Shan JJ. Memory enhancement from two weeks’ exposure to North American Ginseng extract HT1001 in young and middle aged healthy adults. Open Nutraceuticals J. 2010;3:20–4.Google Scholar
  102. 102.
    Scholey A, Ossoukhova A, Owen L, Ibarra A, Pipingas A, He K, Roller M, Stough C. Effects of American ginseng (Panax quinquefolius) on neurocognitive function: an acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology. 2010;212:345–56.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Ossoukhova A, Owen L, Savage K, Meyer M, Ibarra A, Roller M, Pipingas A, Wesnes K, Scholey A. Improved working memory performance following administration of a single dose of American ginseng (Panax quinquefolius L.) to healthy middle-age adults. Hum Psychopharmacol. 2015;30:108–22.PubMedCrossRefGoogle Scholar
  104. 104.
    Reay JL, Kennedy DO, Scholey AB. Effects of Panax ginseng, consumed with and without glucose, on blood glucose levels and cognitive performance during sustained ‘mentally demanding’ tasks. J Psychopharmacol. 2006;20:771–81.PubMedCrossRefGoogle Scholar
  105. 105.
    Kim J, Shim J, Lee S, Cho WH, Hong E, Lee JH, Han JS, Lee HJ, Lee KW. Rg3-enriched ginseng extract ameliorates scopolamine-induced learning deficits in mice. BMC Complement Altern Med. 2016;16:66.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Salim KN, McEwen BS, Chao HM. Ginsenoside Rb1 regulates ChAT, NGF and trkA mRNA expression in the rat brain. Brain Res Mol Brain Res. 1997;47:177–82.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Shen LH, Zhang JT. Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells. Neurol Res. 2004;26:422–8.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Kitts DD, Wijewickreme AN, Hu C. Antioxidant properties of a North American ginseng extract. Mol Cell Biochem. 2000;203:1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ye R, Li N, Han J, Kong X, Cao R, Rao Z, Zhao G. Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci Res. 2009;64:306–10.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Van Kampen JM, Baranowski DB, Shaw CA, Kay DG. Panax ginseng is neuroprotective in a novel progressive model of Parkinson’s disease. Exp Gerontol. 2014;50:95–105.PubMedCrossRefGoogle Scholar
  111. 111.
    Chen XC, Chen Y, Zhu YG, Fang F, Chen LM. Protective effect of ginsenoside Rg1 against MPTP-induced apoptosis in mouse substantia nigra neurons. Acta Pharmacol Sin. 2002;23:829–34.PubMedGoogle Scholar
  112. 112.
    Luo FC, Wang SD, Qi L, Song JY, Lv T, Bai J. Protective effect of panaxatriol saponins extracted from Panax notoginseng against MPTP-induced neurotoxicity in vivo. J Ethnopharmacol. 2011;133:448–53.PubMedCrossRefGoogle Scholar
  113. 113.
    Park SM, Choi MS, Sohn NW, Shin JW. Ginsenoside Rg3 attenuates microglia activation following systemic lipopolysaccharide treatment in mice. Biol Pharm Bull. 2012;35:1546–52.PubMedCrossRefGoogle Scholar
  114. 114.
    Van Kampen J, Robertson H, Hagg T, Drobitch R. Neuroprotective actions of the ginseng extract G115 in two rodent models of Parkinson’s disease. Exp Neurol. 2003;184:521–9.PubMedCrossRefGoogle Scholar
  115. 115.
    Shin EJ, Shin SW, Nguyen TT, Park DH, Wie MB, Jang CG, Nah SY, Yang BW, Ko SK, Nabeshima T, Kim HC. Ginsenoside Re rescues methamphetamine-induced oxidative damage, mitochondrial dysfunction, microglial activation, and dopaminergic degeneration by inhibiting the protein kinase Cδ gene. Mol Neurobiol. 2014;49:1400–21.PubMedCrossRefGoogle Scholar
  116. 116.
    Zhang G, Liu A, Zhou Y, San X, Jin T, Jin Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J Ethnopharmacol. 2008;115:441–8.PubMedCrossRefGoogle Scholar
  117. 117.
    Liang W, Ge S, Yang L, Yang M, Ye Z, Yan M, Du J, Luo Z. Ginsenosides Rb1 and Rg1 promote proliferation and expression of neurotrophic factors in primary Schwann cell cultures. Brain Res. 2010;1357:19–25.PubMedCrossRefGoogle Scholar
  118. 118.
    Zhang C, Du F, Shi M, Ye R, Cheng H, Han J, Ma L, Cao R, Rao Z, Zhao G. Ginsenoside Rd protects neurons against glutamate-induced excitotoxicity by inhibiting ca(2+) influx. Cell Mol Neurobiol. 2012;32:121–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Beamer CA, Shepherd DM. Inhibition of TLR ligand- and interferon gamma-induced murine microglial activation by panax notoginseng. J Neuroimmune Pharmacol. 2012;7:465–76.PubMedCrossRefGoogle Scholar
  120. 120.
    Lee JS, Song JH, Sohn NW, Shin JW. Inhibitory effects of ginsenoside Rb1 on neuroinflammation following systemic lipopolysaccharide treatment in mice. Phytother Res. 2013;27:1270–6.PubMedCrossRefGoogle Scholar
  121. 121.
    Lin WM, Zhang YM, Moldzio R, Rausch WD. Ginsenoside Rd attenuates neuroinflammation of dopaminergic cells in culture. J Neural Transm Suppl. 2007;72:105–12.CrossRefGoogle Scholar
  122. 122.
    Huang Y, Yu J, Wan F, Zhang W, Yang H, Wang L, Qi H, Wu C. Panaxatriol saponins attenuated oxygen-glucose deprivation injury in PC12 cells via activation of PI3K/Akt and Nrf2 signaling pathway. Oxidative Med Cell Longev. 2014;2014:978034.Google Scholar
  123. 123.
    Lee SH, Hur J, Lee EH, Kim SY. Ginsenoside Rb1 Modulates level of monoamine neurotransmitters in mice frontal cortex and cerebellum in response to immobilization stress. Biomol Ther (Seoul). 2012;20:482–6.CrossRefGoogle Scholar
  124. 124.
    Benishin CG. Actions of ginsenoside Rb1 on choline uptake in central cholinergic nerve endings. Neurochem Int. 1992;21:1–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Chen XC, Fang F, Zhu YG, Chen LM, Zhou YC, Chen Y. Protective effect of ginsenoside Rg1 on MPP+−induced apoptosis in SHSY5Y cells. J Neural Transm (Vienna). 2003;110:835–45.CrossRefGoogle Scholar
  126. 125.
    Radad K, Gille G, Moldzio R, Saito H, Rausch WD. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res. 2004a;1021:41–53.PubMedCrossRefGoogle Scholar
  127. 126.
    Radad K, Gille G, Moldzio R, Saito H, Ishige K, Rausch WD. Ginsenosides Rb1 and Rg1 effects on survival and neurite growth of MPP+−affected mesencephalic dopaminergic cells. J Neural Transm (Vienna). 2004b;111:37–45.CrossRefGoogle Scholar
  128. 127.
    Gao QG, Chen WF, Xie JX, Wong MS. Ginsenoside Rg1 protects against 6-OHDA-induced neurotoxicity in neuroblastoma SK-N-SH cells via IGF-I receptor and estrogen receptor pathways. J Neurochem. 2009;109:1338–47.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 128.
    Ge KL, Chen WF, Xie JX, Wong MS. Ginsenoside Rg1 protects against 6-OHDA-induced toxicity in MES23.5 cells via Akt and ERK signaling pathways. J Ethnopharmacol. 2010;127:118–23.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 129.
    Xu H, Jiang H, Wang J, Xie J. Rg1 protects iron-induced neurotoxicity through antioxidant and iron regulatory proteins in 6-OHDA-treated MES23.5 cells. J Cell Biochem. 2010;111:1537–45.PubMedCrossRefGoogle Scholar
  131. 130.
    Morris CA, Avorn J. Internet marketing of herbal products. JAMA. 2003;290:1505–9.PubMedCrossRefGoogle Scholar
  132. 131.
    Dubey AK, Shankar PR, Upadhyaya D, Deshpande VY. Ginkgo biloba--an appraisal. Kathmandu Univ Med J (KUMJ). 2004;2:225–9.Google Scholar
  133. 132.
    Diamond BJ, Bailey MR. Ginkgo biloba: indications, mechanisms, and safety. Psychiatr Clin North Am. 2013;36:73–83.PubMedCrossRefGoogle Scholar
  134. 133.
    DeFeudis FV, Drieu K. Ginkgo biloba extract (EGb 761) and CNS functions: basic studies and clinical applications. Curr Drug Targets. 2000;1:25–58.PubMedCrossRefGoogle Scholar
  135. 134.
    Tan MS, Yu JT, Tan CC, Wang HF, Meng XF, Wang C, Jiang T, Zhu XC, Tan L. Efficacy and adverse effects of Ginkgo Biloba for cognitive impairment and dementia: a systematic review and meta-analysis. J Alzheimers Dis. 2015;43:589–603.PubMedCrossRefGoogle Scholar
  136. 135.
    Scholey AB, Kennedy DO. Acute, dose-dependent cognitive effects of Ginkgo biloba, Panax ginseng and their combination in healthy young volunteers: differential interactions with cognitive demand. Hum Psychopharmacol. 2002;17:35–44.PubMedCrossRefGoogle Scholar
  137. 136.
    Kennedy DO, Jackson PA, Haskell CF, Scholey AB. Modulation of cognitive performance following single doses of 120 mg Ginkgo biloba extract administered to healthy young volunteers. Hum Psychopharmacol. 2007;22:559–66.PubMedCrossRefGoogle Scholar
  138. 137.
    Elsabagh S, Hartley DE, Ali O, Williamson EM, File SE. Differential cognitive effects of Ginkgo biloba after acute and chronic treatment in healthy young volunteers. Psychopharmacology. 2005;179:437–46.PubMedCrossRefGoogle Scholar
  139. 138.
    Kanowski S, Hoerr R. Ginkgo biloba extract EGb 761 in dementia: intent-to-treat analyses of a 24-week, multi-center, double-blind, placebo-controlled, randomized trial. Pharmacopsychiatry. 2003;36:297–303.PubMedCrossRefGoogle Scholar
  140. 139.
    DeKosky ST, Williamson JD, Fitzpatrick AL, Kronmal RA, Ives DG, Saxton JA, Lopez OL, Burke G, Carlson MC, Fried LP, Kuller LH, Robbins JA, Tracy RP, Woolard NF, Dunn L, Snitz BE, Nahin RL, Furberg CD. Ginkgo Evaluation of Memory (GEM) Study Investigators. Ginkgo biloba for prevention of dementia: a randomized controlled trial. JAMA. 2008;300:2253–62.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 140.
    Snitz BE, O'Meara ES, Carlson MC, Arnold AM, Ives DG, Rapp SR, Saxton J, Lopez OL, Dunn LO, Sink KM, DeKosky ST. Ginkgo Evaluation of Memory (GEM) Study Investigators. Ginkgo biloba for preventing cognitive decline in older adults: a randomized trial. JAMA. 2009;302:2663–70.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 141.
    Napryeyenko O, Sonnik G, Tartakovsky I. Efficacy and tolerability of Ginkgo biloba extract EGb 761® by type of dementia: analyses of a randomised controlled trial. J Neurol Sci. 2009;283:224–9.PubMedCrossRefGoogle Scholar
  143. 142.
    Scripnikov A, Khomenko A, Napryeyenko O for the GINDEM-NP Study Group. Effects of Ginkgo biloba Extract EGb 761® on neuropsychiatric symptoms of dementia: findings from a randomised controlled trial. Wien Med Wochenschr. 2007;157(13–14): 295–300.PubMedCrossRefGoogle Scholar
  144. 143.
    Grass-Kapanke B, Busmane A, Lasmanis A, Hoerr R, Kaschel R. Effects of Ginkgo Biloba special extract EGb 761® in very mild cognitive impairment (vMCI). Neurosci Med. 2011;2:48–56.CrossRefGoogle Scholar
  145. 144.
    Beck SM, Ruge H, Schindler C, Burkart M, Miller R, Kirschbaum C, Goschke T. Effects of Ginkgo biloba extract EGb 761® on cognitive control functions, mental activity of the prefrontal cortex and stress reactivity in elderly adults with subjective memory impairment - a randomized double-blind placebo-controlled trial. Hum Psychopharmacol. 2016;31:227–42.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 145.
    Rainer M, Mucke H, Schlaefke S. Ginkgo biloba extract EGb 761 in the treatment of dementia: a pharmacoeconomic analysis of the Austrian setting. Wien Klin Wochenschr. 2013;125:8–15.PubMedCrossRefGoogle Scholar
  147. 146.
    Yancheva S, Ihl R, Nikolova G, Panayotov P, Schlaefke S, Hoerr R, GINDON Study Group. Ginkgo biloba extract EGb 761(R), donepezil or both combined in the treatment of Alzheimer’s disease with neuropsychiatric features: a randomised, double-blind, exploratory trial. Aging Ment Health. 2009;13:183–90.PubMedCrossRefGoogle Scholar
  148. 147.
    Aisen PS. The development of anti-amyloid therapy for Alzheimer’s disease : from secretase modulators to polymerisation inhibitors. CNS Drugs. 2005;19:989–96.PubMedCrossRefGoogle Scholar
  149. 148.
    Tchantchou F, Xu Y, Wu Y, Christen Y, Luo Y. EGb 761 enhances adult hippocampal neurogenesis and phosphorylation of CREB in transgenic mouse model of Alzheimer’s disease. FASEB J. 2007;21:2400–8.PubMedCrossRefGoogle Scholar
  150. 149.
    Augustin S, Rimbach G, Augustin K, Schliebs R, Wolffram S, Cermak R. Effect of a short- and long-term treatment with Ginkgo biloba extract on amyloid precursor protein levels in a transgenic mouse model relevant to Alzheimer’s disease. Arch Biochem Biophys. 2009;481:177–82.PubMedCrossRefGoogle Scholar
  151. 150.
    Yao ZX, Han Z, Drieu K, Papadopoulos V. Ginkgo biloba extract (Egb 761) inhibits beta-amyloid production by lowering free cholesterol levels. J Nutr Biochem. 2004;15:749–56.PubMedCrossRefGoogle Scholar
  152. 151.
    Colciaghi F, Borroni B, Zimmermann M, Bellone C, Longhi A, Padovani A, Cattabeni F, Christen Y, Di Luca M. Amyloid precursor protein metabolism is regulated toward alpha-secretase pathway by Ginkgo biloba extracts. Neurobiol Dis. 2004;16:454–60.PubMedCrossRefGoogle Scholar
  153. 152.
    Wan W, Zhang C, Danielsen M, Li Q, Chen W, Chan Y, Li Y. EGb761 improves cognitive function and regulates inflammatory responses in the APP/PS1 mouse. Exp Gerontol. 2016;81:92–100.PubMedCrossRefGoogle Scholar
  154. 153.
    Liu L, Zhang C, Kalionis B, Wan W, Murthi P, Cheng C, Li Y, Xia S. EGb761 protects against Aβ1-42 oligomer-induced cell damage via endoplasmic reticulum stress activation and Hsp70 protein expression increase in SH-SY5Y cells. Exp Gerontol. 2016;75:56–63.PubMedCrossRefGoogle Scholar
  155. 154.
    Ma L, Wang S, Tai F, Yuan G, Wu R, Liu X, Wei B, Yang X. Effects of bilobalide on anxiety, spatial learning, memory and levels of hippocampal glucocorticoid receptors in male Kunming mice. Phytomedicine. 2012;20:89–96.PubMedCrossRefGoogle Scholar
  156. 155.
    Blecharz-Klin K, Piechal A, Joniec I, Pyrzanowska J, Widy-Tyszkiewicz E. Pharmacological and biochemical effects of Ginkgo biloba extract on learning, memory consolidation and motor activity in old rats. Acta Neurobiol Exp. 2009;69:217–31.Google Scholar
  157. 156.
    Yoshitake T, Yoshitake S, Kehr J. The Ginkgo biloba extract EGb 761(R) and its main constituent flavonoids and ginkgolides increase extracellular dopamine levels in the rat prefrontal cortex. Br J Pharmacol. 2010;159:659–68.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 157.
    Kehr J, Yoshitake S, Ijiri S, Koch E, Nöldner M, Yoshitake T. Ginkgo biloba leaf extract (EGb 761®) and its specific acylated flavonol constituents increase dopamine and acetylcholine levels in the rat medial prefrontal cortex: possible implications for the cognitive enhancing properties of EGb 761®. Int Psychogeriatr. 2012;24(Suppl 1):S25–34.PubMedCrossRefGoogle Scholar
  159. 158.
    Stein C, Hopfeld J, Lau H, Klein J. Effects of Ginkgo biloba extract EGb 761, donepezil and their combination on central cholinergic function in aged rats. J Pharm Pharm Sci. 2015;18:634–46.PubMedCrossRefGoogle Scholar
  160. 159.
    Siddique MS, Eddeb F, Mantle D, Mendelow AD. Extracts of Ginkgo biloba and Panax ginseng protect brain proteins from free radical induced oxidative damage in vitro. Acta Neurochir Suppl. 2000;76:87–90.PubMedGoogle Scholar
  161. 160.
    Eckert A, Keil U, Scherping I, Hauptmann S, Müller WE. Stabilization of mitochondrial membrane potential and improvement of neuronal energy metabolism by Ginkgo biloba extract EGb 761. Ann N Y Acad Sci. 2005;1056:474–85.PubMedCrossRefGoogle Scholar
  162. 161.
    Rojas P, Serrano-García N, Mares-Sámano JJ, Medina-Campos ON, Pedraza-Chaverri J, Ogren SO. EGb761 protects against nigrostriatal dopaminergic neurotoxicity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice: role of oxidative stress. Eur J Neurosci. 2008;28:41–50.PubMedCrossRefGoogle Scholar
  163. 162.
    Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C, Klein WL, Luo Y. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J Alzheimers Dis. 2009;18:787–98.PubMedCrossRefGoogle Scholar
  164. 163.
    Aggarwal BB, Sundaram C, Malani N, Ichikawa H. Curcumin: the Indian solid gold (molecular targets and therapeutic uses of curcumin in health and disease). Adv Exp Med Biol. 2007;595:1–75.PubMedCrossRefGoogle Scholar
  165. 164.
    Hishikawa N, Takahashi Y, Amakusa Y, Tanno Y, Tuji Y, Niwa H, Murakami N, Krishna UK. Effects of turmeric on Alzheimer’s disease with behavioral and psychological symptoms of dementia. Ayu. 2012;33:499–504.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 165.
    Ringman JM, Frautschy SA, Teng E, Begum AN, Bardens J, Beigi M, Gylys KH, Badmaev V, Heath DD, Apostolova LG, Porter V, Vanek Z, Marshall GA, Hellemann G, Sugar C, Masterman DL, Montine TJ, Cummings JL, Cole GM. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther. 2012;4:43.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 166.
    Potter PE. Curcumin: a natural substance with potential efficacy in Alzheimer’s disease. J Exp Pharmacol. 2013;5:23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 167.
    DiSilvestro RA, Joseph E, Zhao S, Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 2012;11:79.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 168.
    Cox KH, Pipingas A, Scholey AB. Investigation of the effects of solid lipid curcumin on cognition and mood in a healthy older population. J Psychopharmacol. 2015;29:642–51.PubMedCrossRefGoogle Scholar
  170. 169.
    Rainey-Smith SR, Brown BM, Sohrabi HR, Shah T, Goozee KG, Gupta VB, Martins RN. Curcumin and cognition: a randomised, placebo-controlled, double-blind study of community-dwelling older adults. Br J Nutr. 2016;115:2106–13.PubMedCrossRefGoogle Scholar
  171. 170.
    Liu ZJ, Li ZH, Liu L, Tang WX, Wang Y, Dong MR, Xiao C. Curcumin attenuates beta-amyloid-induced neuroinflammation via activation of peroxisome proliferator-activated receptor-gamma function in a rat model of Alzheimer’s disease. Front Pharmacol. 2016;7:261.PubMedPubMedCentralGoogle Scholar
  172. 171.
    Zhang L, Fang Y, Xu Y, Lian Y, Xie N, Wu T, Zhang H, Sun L, Zhang R, Wang Z. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLoS One. 2015;10:e0131525.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 172.
    Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21:8370–7.PubMedCrossRefGoogle Scholar
  174. 173.
    Thapa A, Vernon BC, De la Peña K, Soliz G, Moreno HA, López GP, Chi EY. Membrane-mediated neuroprotection by curcumin from amyloid-β-peptide-induced toxicity. Langmuir. 2013;29:11713–23.PubMedCrossRefGoogle Scholar
  175. 174.
    Thapa A, Jett SD, Chi EY. Curcumin attenuates amyloid-β aggregate toxicity and modulates amyloid-β aggregation pathway. ACS Chem Neurosci. 2016;7:56–68.PubMedCrossRefGoogle Scholar
  176. 175.
    Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Kandimalla R, Kuruva CS. Protective effects of a natural product, curcumin, against amyloid β induced mitochondrial and synaptic toxicities in Alzheimer’s disease. J Investig Med. 2016;64:1220–34.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 176.
    Liu Z, Yu Y, Li X, Ross CA, Smith WW. Curcumin protects against A53T alpha-synuclein-induced toxicity in a PC12 inducible cell model for Parkinsonism. Pharmacol Res. 2011;63:439–44.PubMedCrossRefGoogle Scholar
  178. 177.
    Spinelli KJ, Osterberg VR, Meshul CK, Soumyanath A, Unni VK. Curcumin treatment improves motor behavior in α-synuclein transgenic mice. PLoS One. 2015;10:e0128510.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 178.
    Wang MS, Boddapati S, Emadi S, Sierks MR. Curcumin reduces α-synuclein induced cytotoxicity in Parkinson’s disease cell model. BMC Neurosci. 2010;11:57.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 179.
    Du XX, Xu HM, Jiang H, Song N, Wang J, Xie JX. Curcumin protects nigral dopaminergic neurons by iron-chelation in the 6-hydroxydopamine rat model of Parkinson’s disease. Neurosci Bull. 2012;28:253–8.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 180.
    He XJ, Uchida K, Megumi C, Tsuge N, Nakayama H. Dietary curcumin supplementation attenuates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in C57BL mice. J Toxicol Pathol. 2015;28:197–206.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 181.
    van der Merwe C, van Dyk HC, Engelbrecht L, van der Westhuizen FH, Kinnear C, Loos B, Bardien S. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol Neurobiol. 2016.; [Epub ahead of print]Google Scholar
  183. 182.
    Cui Q, Li X, Zhu H. Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway. Mol Med Rep. 2016;13:1381–8.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Omar M. E. Abdel-Salam
    • 1
  1. 1.Department of Toxicology and NarcoticsNational Research CentreCairoEgypt

Personalised recommendations