Skip to main content

Dietary Directions Against Dementia Disorders

  • Chapter
  • First Online:
Pathology, Prevention and Therapeutics of Neurodegenerative Disease

Abstract

Since human health benefits are influenced by diets and lifestyle, the dietary intake and body–brain interactions of phytochemicals which are abundant in fruits, berries, vegetables, herbs, and in beverages are a promising avenue and resource that can provide dietary intervention and protection strategies against Alzheimer’s disease, Parkinson disease, Huntington disease, and Amyotrophic Lateral Sclerosis dementia diseases. The manipulation of the molecular mechanisms and metabolic processes of food consumption occurring in body and brain can direct, determine, and provide new strategies of how to optimize and select dietary constituents that may sustainably provide generic benefits for neurons to defend against insults and damage, and sustain mental fitness against all neurodegenerative diseases. This chapter provides a perspective of the molecular episodes of dietary phytochemicals including polyphenols, brain foods/beverages, and herbs that can be used and directed towards providing health-sustaining interventions against protein misfolding-neurodegenerative and dementia disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boese AD, Codorniu-Hernandez E. Cross-talk between amino acid residues and flavonoid derivatives: insights into their chemical recognition. Phys Chem Chem Phys. 2012;14:15682–92.

    Article  PubMed  Google Scholar 

  2. Rodriguez-Mateos A, Vauzour D, Krueger CG, Shanmuganayagam D, Reed J, Calani L, Mena P, Del Rio D, Crozier A. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch Toxicol. 2014;88:1803–53.

    Article  CAS  PubMed  Google Scholar 

  3. D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R. Bioavailability of the polyphenols: status and controversies. Int J Mol Sci. 2010;11:1321–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nichloson JK, et al. Host-gut microbiota metabolic interactions. Science. 2012;362:1262–7.

    Article  Google Scholar 

  5. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbough PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol. 2016;14:273–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhernakova A, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science. 2016;352:565–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu M, et al. Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides. Science. 2015;350:55–62.

    CAS  Google Scholar 

  8. Rogers GB, Keating DJ, Young RL, Wong M-L, Licino J, Wesselingh S. From gut dysbiosis to altered brain function and mental illness: mechanisms and pathways. Mol Psychiatry. 2016;21:738–48. https://doi.org/10.1038/mp.2016.50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  PubMed  Google Scholar 

  10. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–8.

    Article  CAS  PubMed  Google Scholar 

  11. Heijtz DR, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A. 2011;108:3047–52.

    Article  CAS  PubMed Central  Google Scholar 

  12. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, et al. Inflammaging. An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908:244–54.

    Article  CAS  PubMed  Google Scholar 

  13. Collado MC, Bäueri C, Pérez-Martínez G. Defining microbiota for developing new probiotics. Microb Ecol Health Dis. 2012;23:35–9.

    Google Scholar 

  14. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci U S A. 2011;108:8030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Caracciolo B, Xu W, Collins S, Fratiglioni L. Cognitive decline, dietary factors and gut-brain interactions. Mech Ageing Dev. 2014;136–137:59–69.

    Article  PubMed  Google Scholar 

  16. Hassing LB, Dahl AK, Thorvaldsson V, Berg S, Gatz M, Pedersen NL, et al. Overweight in midlife and risk of dementia: a 40-year follow-up study. Int J Obes. 2009;33:893–8.

    Article  CAS  Google Scholar 

  17. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Winblad B, et al. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol. 2005;62:1556–60.

    Article  PubMed  Google Scholar 

  18. Cheng CM, Chiu MJ, Wang JH, Liu HC, Shyu YI, Huang GH, et al. Cognitive stimulation during hospitalization improves global cognition of older Taiwanese undergoing elective total knee and hip replacement surgery. J Adv Nurs. 2012;68:1322–9.

    Article  PubMed  Google Scholar 

  19. Exalto LG, Whitmer RA, Kappele LJ, Biessels GJ. An update on type 2 diabetes, vascular dementia and Alzheimer’s disease. Exp Gerontol. 2012;47:858–64.

    Article  CAS  PubMed  Google Scholar 

  20. Griffin WS. Neuroinflammatory cytokine signaling and Alzheimer’s disease. N Engl J Med. 2013;368:770–1.

    Article  CAS  PubMed  Google Scholar 

  21. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.

    Article  CAS  PubMed  Google Scholar 

  22. Titova OE, Ax E, Brooks SJ, Sjögren P, Cederholm T, Kilander L, et al. Mediterranean diet habits in older individuals: associations with cognitive functioning and brain volumes. Exp Gerontol. 2013;48:1443–8.

    Article  PubMed  Google Scholar 

  23. Kesby JP, Kim JJ, Scadeng M, Woods G, Kado DM, Olefsky JM, et al. Spatial cognition in adult and aged mice exposed to high-fat diet. PLoS One. 2015;10:e0140034.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang D, et al. Role of intestinal microbiota in the generation of polyphenol derived phenolic acid mediated attenuation of Alzheimer’s disease β-amyloid oligomerization. Mol Nutr Food Res. 2015;59:1025–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. van Duynhoven J, van der Hooft JJ, van Dorsten FA, Peters S, Foltz M, Gomez-Roldan V, Vervoort J, de Vos RCH, Jacobs DM. Rapid and sustained systemic circulation of conjugated gut microbial catabolites after single-dose black tea extract consumption. J Proteome Res. 2014;13:2668–78.

    Article  PubMed  Google Scholar 

  26. van Dorsten FA, et al. Gut microbial metabolism of polyphenols from black tea and red wine/grape juice is source-specific and colon-region dependent. J Agric Food Chem. 2012;60:11331–42.

    Article  PubMed  Google Scholar 

  27. Moco S, Martin F-PJ, Rezzi S. Metabolomics view on gut microbiome modulation by polyphenol-rich foods. J Proteome Res. 2012;11:4781–90.

    Article  CAS  PubMed  Google Scholar 

  28. Gasperotti M, et al. Fate of microbial metabolites of dietary polyphenols in rats: is the brain their target destination? ACS Neurosci. 2015;6:1341–52.

    Article  CAS  Google Scholar 

  29. LeVine H III, Lampe L, Abdelmoti L, Corinne E, Augelli-Szafran CE. Dihydroxybenzoic acid isomers differentially dissociate soluble biotinyl-Ab(1-42) oligomers. Biochemist. 2012;51:307–15.

    Article  CAS  Google Scholar 

  30. Porzoor A, Alford B, Hügel H, Grando D, Caine J, Macreadie I. Anti-amyloidogenic properties of some phenolic compounds. Biomol Ther. 2015;5:505–27.

    CAS  Google Scholar 

  31. Yuan T, Ma H, Liu W, Niesen DB, Shah N, Crews R, Rose KN, Vattem DA, Seeram NP. Pomegranate’s neuroprotective effects against Alzheimer’s disease are mediated by urolithins, its ellagitannin-gut microbial derived metabolites. ACS Chem Neurosci. 2016;7:26–33.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmed AH, Subaiea GM, Eid A, Li L, Seeram NP, Zawia NH. Pomegranate extract modulates processing of amyloid- β precursor protein in an aged Alzheimer’s disease animal model. Curr Alzheimer Res. 2014;11:834–43.

    Article  CAS  PubMed  Google Scholar 

  33. Giménez-Bastida JA, Henryk Zieliñski H. Buckwheat as a functional food and its effects on health. J Agric Food Chem. 2016;64:7896–913.

    Google Scholar 

  34. Sasaki K, Han J, Shimozono H, Villareal MO, Isoda H. Caffeoylquinic acid-rich purple sweet potato extract, with or without anthocyanin, imparts neuroprotection and contributes to the improvement of spatial learning and memory of SAMP8 mouse. J Agric Food Chem. 2013;61:5037–45.

    Article  CAS  PubMed  Google Scholar 

  35. Ogah O, Watkins CS, Ubi BE, Oraguzie NC. Phenolic compounds in Rosaceae fruit and nut crops. J Agric Food Chem. 2014;62:369−9386.

    Article  Google Scholar 

  36. Thapa A, Jett SD, Chi EY. Curcumin attenuates amyloid-β aggregate toxicity and modulates amyloid-β aggregation pathway. ACS Chem Neurosci. 2016;7:56−68.

    Article  PubMed  Google Scholar 

  37. Kean RJ, Lamport DJ, Dodd GF, freeman JE, Williams CM, Ellis JA, Butler LT, Spencer JP. Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: an 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am J Clin Nutr. 2015;101:506–14.

    Article  CAS  PubMed  Google Scholar 

  38. Brickman AM, Khan UA, Provenzano FA, Yeung LK, Suzuki W, Schroeter H, Wall M, Sloan RP, Small SA. Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci. 2014;17:1798–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rassaf T, Rammos C, Hendgen-Cotta UB, Heiss C, Kleophas W, Dellana F, Floege J, Hetzel GR, Kelm M. Vasculoprotective effects of dietary cocoa flavanols in patients on hemodialysis: a double-blind, randomized, placebo-controlled trial. Clin J Am Soc Nephrol. 2016;7:108–18.

    Article  Google Scholar 

  40. Hügel HM, Jackson N. Redox chemistry of green tea polyphenols: therapeutic benefits in neurodegenerative diseases. Mini Rev Med Chem. 2012;12:380–7.

    Article  PubMed  Google Scholar 

  41. Hügel HM. Brain food for AD-free ageing: focus on herbal medicines. Natural compounds as therapeutic agents for amyloidogenic disease. Adv Exp Med Biol. 2015;863:95–116.

    Article  PubMed  Google Scholar 

  42. Hügel HM, Jackson N. Polyphenols for the prevention and treatment of dementia diseases. Neural Regen Res. 2015;10:1756–8.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hügel HM, Yu T, Jackson N. The effects of coffee consumption on cognition and dementia diseases. J Gerontol Geriatr Res. 2015;4:233–9.

    Google Scholar 

  44. Abuznait AH, Qosa H, Busnena BA, El Sayed KA, Kaddoumi A. Olive-oil-derived oleocanthal enhances β-amyloid clearance as a potential neuroprotective mechanism against Alzheimers Disease: in vitro and in vivo studies. ACS Chem Neurosci. 2013;4:973–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Grossi C, Rigacci S, Ambrosini S, Ed Dami T, Luccarini I, Traini C, Facilli P, Berti A, Casamenti F, Stefani M. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLoS One. 2013;8:e71702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Luccarini L, Ed Dami T, Grossi C, Rigacci S, Stefani M, Casamenti F. Oleuropein aglycone counteracts Aβ42 toxicity in the rat brain. Neurosci Lett. 2014;558:67–72.

    Article  CAS  PubMed  Google Scholar 

  47. Zoidou E, Magiatis P, Melliou E, Constantinou M, Haroutounian S, Skaltsounis AL. Food Oleuropein as a bioactive constituent added in milk and yogurt. Food Chem. 2014;158:319–24.

    Article  CAS  PubMed  Google Scholar 

  48. Hügel HM, Jackson N. Danshen diversity defeating dementia. Bioorg Med Chem Lett. 2014;24:708–16.

    Article  PubMed  Google Scholar 

  49. Wang Q, Yu X, Patal K, Hu R, Chuang S, Zhang G, Zheng J. Tanshinones inhibit amyloid aggregation by amyloid-β peptide, disaggregate amyloid fibrils, and protect cultured cells. ACS Chem Neurosci. 2013;4:1004–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan S, Calani L, Bresciani L, Dall’asta M, Faccini A, Augustin MA, Gras SL, del Rio D. The degradation of curcuminoids in a human faecal fermentation model. Int J Food Sci Nutr. 2015;66:790–6.

    Article  CAS  PubMed  Google Scholar 

  51. Baeg IH, So SH. The world ginseng market and the ginseng (Korea). J Ginseng Res. 2013;37:1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J Ginseng Res. 2013;37:8–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen F, Eckman EA, Eckman CB. Reductions in levels of the Alzheimer’s amyloid β peptide after oral administration of ginsenosides. FASEB J. 2006;20:1269–71.

    Article  CAS  PubMed  Google Scholar 

  54. Karpagam V, Satishkumar N, Sathiyamoorthy S, Rasappan P, Shila S, Kim YJ, Yang DC. Identification of BACE1 inhibitors from Panax ginseng saponins-an insilico approach. Comput Biol Med. 2013;43:1037–44.

    Article  CAS  PubMed  Google Scholar 

  55. Nastase AF, Boyd DB. Simple structure-based approach for predicting the activity of inhibitors of beta-secreatase (BACE1) associated with Alzheimer’s disease. J Chem Inf Model. 2012;52:3302–7.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Z, Du GJ, Wang CZ, Wen XD, Calway T, Li Z, He TC, Du W, Bissonnette M, Musch MW, Chang EB, Yuan CS. Compound K, a ginsenoside metabolite, inhibits colon cancer growth via multiple pathways including p53-p21 interactions. Int J Mol Sci. 2013;14:2980–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Guo J, Chang L, Zhang X, Pei S, Yu M, Gao M. Ginsenoside compound K promotes β-amyloid peptide clearance in primary astrocytes via autophagy enhancement. Exp Ther Med. 2014;8:1271–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. The Huntington’s Disease Collaborative Research Group. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72:971–83.

    Article  Google Scholar 

  59. Paul BD, Sbodi JI, Xu R, Vandiver MS, Cha JY, Snowman AM, Snyder SH. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s disease. Nature. 2014;509:96–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Demirkol O, Adams C, Ercal N. Biologically important thiols in various vegetables and fruits. J Agric Food Chem. 2004;52:8151–4.

    Article  CAS  PubMed  Google Scholar 

  61. Vyas P, Kalidindi S, Chibrikova L, Igamberdiev AU, Weber JT. Chemical analysis and effect of blueberry and logonberry fruits and leaves against glutamate-mediated excitotoxicity. J Agric Food Chem. 2013;61:7769–76.

    Article  CAS  PubMed  Google Scholar 

  62. Pasinetti GM, Wang J, Ho L, Zhao W, Dubner L. Roles of resveratrol and other grape-derived polyphenols in Alzheimer’s disease prevention and treatment. Biochim Biophys Acta. 2015;1852:1202–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bastianetto S, Menard C, Quirion R. Neuroprotective action of resveratrol. Biochim Biophys Acta. 2015;1852:1195–201.

    Article  CAS  PubMed  Google Scholar 

  64. Naia L, Rosenstock TR, Oliveira AM, Oliveira-Sousa SI, Caldeira GL, Carmo C, Laco MN, Hayden MR, Oliveira CR, Rego AC. Comparative mitochondrial-based protective effects of resveratrol and nictotinamide in Huntington’s disease models. Mol Neurobiol. 2017;54(7):5385–99.

    Article  CAS  PubMed  Google Scholar 

  65. Colín-González AL, Aguilera G, Abel Santamaría A. Cannabinoids: glutamatergic transmission and kynurenines. In: Essa MM, et al., editors. The benefits of natural products for neurodegenerative diseases, Advances in neurobiology, vol. 12. Switzerland: Springer International Publishing; 2016. p. 173–92. https://doi.org/10.1007/978-3-319-28383-8_10.

    Chapter  Google Scholar 

  66. Sagredo O, Pazoa MR, Valdeolivas S, Fernandez-Ruiz J. Cannabinoids: novel medicines for the treatment of Huntington’s disease. Recent Pat CNS Drug Discov. 2012;7:41–8.

    Article  CAS  PubMed  Google Scholar 

  67. Moreno JLL-S, Caldentey JG, Cubillo PT, Romero CR, Ribas GG, Arias AA, de Yebenes MJG, Tolon RM, Galve-Roperh I, Sagredo O, Valdeolivas S, Resel E, Ortega-Guitierrez S, Garcia-Bermejo ML, Ruiz JF, Guzman M, García de Yébenes Prous J. A double-blind, randomized, cross-over, placebo-controlled, pilot trial with Sativex in Huntington’s disease. J Neurol. 2016;263:1390–400.

    Article  Google Scholar 

  68. Tulino R, Benjamin AC, Jolinon N, Smith DL, Chini EN, Carnemolla A, Bates GP. SIRT1 activity is linked to its brain region-specific phosphorylation and is impaired in Huntington’s disease mice. PLoS One. 2016;11(1):e0145425/1–e0145425/25.

    Article  CAS  Google Scholar 

  69. Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Néri C. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet. 2005;37:349–50.

    Article  CAS  PubMed  Google Scholar 

  70. Butler TC, Van den Hout A, Matthews FE, Larson JP, Brayne C, Aarsland D. Dementia and survival in Parkinson’s disease: a 12-year population study. Neurology. 2008;70:1017–22.

    Article  Google Scholar 

  71. Kundu P, Das M, Tripathy K, Sahoo SK. Delivery of dual drug loaded lipid based nanoparticles across blood brain barrier impart enhanced neuroprotection in a rotenone induced mouse model of Parkinson’s disease. ACS Chem Neurosci. 2016;7:1658–70.

    Article  CAS  PubMed  Google Scholar 

  72. Ahmen T, Raza SH, Maryam A, Setzer WN, Braidy N, Nabavi SF, de Oliveira MR, Nabavi SM. Ginsenoside Rb1 as a neuroprotective agent: a review. Brain Res Bull. 2016;125:30–43.

    Article  Google Scholar 

  73. Radad K, Gille G, Moldzio R, Saito H, Rausch WD. Ginsenosides Rb1 and Rg1 effects on mesencephalic dopaminergic cells stressed with glutamate. Brain Res. 2004;1021:41–53.

    Article  CAS  PubMed  Google Scholar 

  74. Ye Y, Fang F, Li Y. Isolation of the Sapogenin from defatted seeds of Camellia oleifera and its neuroprotective effects on dopaminergic neurons. J Agric Food Chem. 2014;62:6175–82.

    Article  CAS  PubMed  Google Scholar 

  75. Kao T-C, Wu C-H, Yen G-C. Bioactivity and potential health benefits of licorice. J Agric Food Chem. 2014;62:542–53.

    Article  CAS  PubMed  Google Scholar 

  76. Kao TC, Shyu MH, Yen GC. Neuroprotective effects of glycyrrhizic acid and 18beta-glycyrrhetinic acid in PC12 cells via modulation of the PI3K/Akt pathway. J Agric Food Chem. 2009;57:754–61.

    Article  CAS  PubMed  Google Scholar 

  77. Tabuchi M, Imamura S, Kawakami Z, Ikarashi Y, Kase Y. The blood-brain barrier permeability of 18beta-glycyrrhetinic acid, a major metabolite of glycyrrhizin in Glycyrrhiza root, a constituent of the traditional Japanese medicine yokukansan. Cell Mol Neurobiol. 2012;32:1139–46.

    Article  CAS  PubMed  Google Scholar 

  78. Gordon PH, Cheng B, Katz IB, et al. The natural history of primary lateral sclerosis. Neurology. 2006;66:647–6453.

    Article  CAS  PubMed  Google Scholar 

  79. Miller RG, Mitchell JD, Moore DH. Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst Rev. 2012;3:CD001447. https://doi.org/10.1002/14651858.CD001447.pub3.

    Article  Google Scholar 

  80. Yu J, Jia Y, Guo Y, Chang G, Duan W, Sun M, Li B, Li C. Epigallocatechin-3-gallate protects motor neurons and regulates glutamate level. FEBS Lett. 2010;584:2921–5.

    Article  CAS  PubMed  Google Scholar 

  81. Singh NA, Mandel AK, Khan ZA. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J. 2016;15:60. https://doi.org/10.1186/s12937-016-0179-4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Abdolvahabi A, Shi Y, Chuprin A, Rasouli S, Shaw BF. Stochastic formation of fibrillar and amorphous superoxide dismutase oligomers linked to amyotrophic lateral sclerosis. ACS Chem Neurosci. 2016;7:799–810.

    Article  CAS  PubMed  Google Scholar 

  83. Shani VBT, Katzman B, Vyazmensky M, Papo N, Israelson A, Engel S. Superoxide dismutase 1 (SOD1)-derived peptide inhibits amyloid aggregation of familial amyotrophic lateral sclerosis SOD1 mutants. ACS Chem Neurosci. 2016;7(11):1595–606.

    Article  PubMed  Google Scholar 

  84. Aaron C, Beaudry G, Parker JA, Therrien M. Maple syrup decreases TDP-43 proteotoxicity in a Caenorhabditis elegans model of amyotrophic lateral sclerosis (ALS). J Agric Food Chem. 2016;64:3338–44.

    Article  CAS  PubMed  Google Scholar 

  85. Hajipour S, Sarkaki A, Farbood Y, Eidi A, Mortazavi P, Valizadeh Z. Effect of gallic acid on dementia type of Alzheimer disease in rats: electrophysiological and histological studies. Basic Clin Neurosci. 2016;7:97–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Trippier PC, Zhao KT, Fox SG, Schiefer IT, Benmohamed R, Moran J, Kirsch DR, Morimoto RI, Silverman RB. Proteasome activation is a mechanism for pyrazolone small molecules displaying therapeutic potential in amyotrophic lateral sclerosis. ACS Chem Neurosci. 2014;5:823–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut M. Hügel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hügel, H.M., Lingham, A.R., Jackson, N., Rook, T. (2019). Dietary Directions Against Dementia Disorders. In: Singh, S., Joshi, N. (eds) Pathology, Prevention and Therapeutics of Neurodegenerative Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-0944-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0944-1_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0943-4

  • Online ISBN: 978-981-13-0944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics