Skip to main content

Recent Advances in the Antioxidant Therapies for Alzheimer’s Disease: Emphasis on Natural Antioxidants

  • Chapter
  • First Online:
Pathology, Prevention and Therapeutics of Neurodegenerative Disease

Abstract

There is an urge to hunt for therapeutic measures against the most rampant neurodegenerative disorder, i.e., Alzheimer’s disease (AD). Recent researches have revealed that dietary antioxidants have potential to combat AD through several antioxidative mechanisms. Oxidative stress, a pathological hallmark of AD occurs mainly through increased free radical production and needs to be targeted and controlled in order to treat AD. Prevention of β-amyloid aggregation is another challenge. Aggregation of amyloid β-protein strongly contributes to the AD pathogenesis. Use of antioxidants can prove to be a hopeful approach to neuroprotection as they have tendency to reduce destructive effects of reactive oxygen species (ROS). Antioxidants keep the equilibrium between the physiological generation of ROS and their normalization. These constitute a major portion of drugs that are presently under investigation for AD pathology. Herein, we have summarized the therapeutic nature of natural antioxidants towards AD. A variety of dietary antioxidants have been chosen to discuss their basic chemical properties, potential towards ROS scavenging, and inhibition of Aβ aggregation. Role of these antioxidants in the management of neurodegenerative disorders have been reviewed on the basis of preclinical and clinical evidences. It has been proved that dietary antioxidants certainly play a crucial role in treatment of AD but strong clinical evidences are still lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hroudova J, Singh N, Fisar Z. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer’s disease. Biomed Res Int. 2014;2014:1–9.

    Article  Google Scholar 

  2. Weiner M, Veitch DP, Aisen PS, Beckett LA, Cairns NJ. Recent publications from the Alzheimer’s disease neuroimaging initiative: reviewing progress toward improved AD clinical trials. Alzheimers Dement. 2017;13:e1–e85.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Price DL, Tanzi RE, Borchelt DR, Sisodia SS. Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet. 1998;32:461–93.

    Article  CAS  PubMed  Google Scholar 

  4. Duan H, Jiang J, Xu J, Zhou H, Huang Z, Yu Z, Yan Z. Differences in Aβ brain networks in Alzheimer’s disease and healthy controls. Brain Res. 2017;1655:77–89.

    Article  CAS  PubMed  Google Scholar 

  5. Aguiar J, Costa R, Rocha F, Estevinho BN, Santos L. Design of microparticles containing natural antioxidants: preparation, characterization and controlled release studies. Powder Technol. 2017;313:287–92.

    Article  CAS  Google Scholar 

  6. Choi DY, Lee YJ, Hong JT, Lee HJ. Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer’s disease. Brain Res Bull. 2012;87:144–53.

    Article  CAS  PubMed  Google Scholar 

  7. Xu P, Zhang M, Sheng R, Ma Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ1–42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur J Med Chem. 2017;127:174–86.

    Article  CAS  PubMed  Google Scholar 

  8. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408:239–47.

    Article  CAS  PubMed  Google Scholar 

  9. Kenjiro O, Tsuyoshi H, Naiki H, Yamada M. Anti-amyloidogenic effects of antioxidants: implications for the prevention and therapeutics of Alzheimer’s disease. Biochim Biophys Acta. 2006;1762:575–86.

    Article  Google Scholar 

  10. Mattson MP. Pathways towards and from Alzheimer’s disease. Nature. 2004;430:631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sies H. Strategies of antioxidant defense. Eur J Biochem. 1993;215:213–9.

    Article  CAS  PubMed  Google Scholar 

  12. Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer’s disease: implications for mitochondrially targeted antioxidant therapeutics. J Biomed Biotechnol. 2006;2006:1–13.

    Article  Google Scholar 

  13. Kostova AT, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res. 2008;52:S128–38.

    Google Scholar 

  14. Mecocci P, Polidori MC, Cherubini A, et al. Lymphocyte oxidative DNA damage and plasma antioxidants in Alzheimer disease. Arch Neurol. 2002;59:794–8.

    Article  PubMed  Google Scholar 

  15. Rinaldi P, Polidori MC, Metastasio A, et al. Plasma antioxidants are similarly depleted in mild cognitive impairment and in Alzheimer’s disease. Neurobiol Aging. 2003;24:915–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kim DO, Lee CY. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit Rev Food Sci Nutr. 2004;44:253–73.

    Article  CAS  PubMed  Google Scholar 

  17. Luchsinger JA, Tang MX, Shea S, et al. Antioxidant vitamin intake and risk of Alzheimer disease. Arch Neurol. 2003;60:203–8.

    Article  PubMed  Google Scholar 

  18. Evatt ML, DeLong MR, Khazai N. Prevalence of vitamin D insufficiency in patients with Parkinson disease and Alzheimer disease. Arch Neurol. 2008;65:1348–52.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yatin SM, Varadarajan S, Butterfield DA. Vitamin E prevents Alzheimer’s amyloid ß-peptide (1-42)-induced neuronal protein oxidation and reactive oxygen species production. J Alzheimer Dis. 2000;2:123–31.

    Article  CAS  Google Scholar 

  20. Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements The Cache County Study. Arch Neurol. 2004;61:82–8.

    Article  PubMed  Google Scholar 

  21. Wang HX, Wahlin A, Basun H, et al. Vitamin B12 and folate in relation to the development of Alzheimer’s disease. Neurology. 2001;56:1188–94.

    Article  CAS  PubMed  Google Scholar 

  22. Aisen PS, Schneider LS, Sano M, et al. High-dose B vitamin supplementation and cognitive decline in Alzheimer disease a randomized controlled trial. JAMA. 2008;300:1774–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, Lucca U. Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr. 2004;80:114–22.

    CAS  PubMed  Google Scholar 

  24. Engelhart MJ, Geerlings MI, Ruitenberg A, van Swieten JC, Hoffman A, Witteman JCM, Breteler MMB. Dietary intake of antioxidant and risk of Alzheimer’s disease. JAMA. 2002;287:3223–9.

    Article  CAS  PubMed  Google Scholar 

  25. Morris MC, Beckett LA, Scherr PA, et al. Vitamin E and vitamin C supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord. 1998;12:121–6.

    Article  CAS  PubMed  Google Scholar 

  26. Isaac MG, Quinn R, Tabet N. Vitamin E for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev. 2008;(3):CD002854. https://doi.org/10.1002/14651858.CD002854.pub2.

  27. Douad G, Refsum H, Jager CAD, et al. Preventing Alzheimer’s disease-related gray matter atrophy by B-vitamin treatment. Proc Natl Acad Sci. 2013;110:9523–8.

    Article  Google Scholar 

  28. Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. N Engl J Med. 1997;336:1216–122.

    Article  CAS  PubMed  Google Scholar 

  29. Oken BS, Storzbach DM, Kaye JA. Ginkgo biloba extract improves cognitive function in mild to moderate Alzheimer’s disease. Arch Neurol. 1998;55:1409–15.

    Article  CAS  PubMed  Google Scholar 

  30. Rosick ER. Ginkgo biloba has multiple effects on Alzheimer’s disease. Life Enhancement. Magazine; May 2002.

    Google Scholar 

  31. Wang BS, Wang H, Song YY, et al. Effectiveness of standardized Ginkgo biloba extract on cognitive symptoms of dementia with a six-month treatment: a bivariate random effect meta-analysis. Pharmacopsychiatry. 2010;44:86–91.

    Article  Google Scholar 

  32. Yang Z, Li W, Huang T, Chen J, Zhang X. Meta-analysis of Ginkgo biloba extract for the treatment of Alzheimer’s disease. Neural Regener Res. 2012;6:1125–9.

    CAS  Google Scholar 

  33. Shi C, Liu J, Wu F, Yew DT. Ginkgo biloba extract in Alzheimer’s disease: from action mechanisms to medical practice. Int J Mol Sci. 2010;11:107–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vellas N, Coley N, Ousset PJ, Berrt G, Dartigues JF, Dubois B, Grandjean H. Long-term use of standardised ginkgo biloba extract for the prevention of Alzheimer’s disease (GuidAge): a randomised placebo-controlled trial. Lancet Neurol. 2012;11:851–9.

    Article  CAS  PubMed  Google Scholar 

  35. Singh M, Arseneault M, Sanderson T, et al. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem. 2008;56:4855–73.

    Article  CAS  PubMed  Google Scholar 

  36. Choi YT, Jung CH, Lee SR, et al. The green tea polyphenol (−)-epigallocatechingallate attenuates betaamyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci. 2001;70:603–14.

    Article  CAS  PubMed  Google Scholar 

  37. Lee JW, Lee YK, Ban JO, et al. Green tea (−)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappa B pathways in mice. J Nutr. 2009;139:1987–93.

    Article  CAS  PubMed  Google Scholar 

  38. Assuncao M, Marques MJS, Carvalho F, et al. Chronic green tea consumption prevents age-related changes in rat hippocampal formation. Neurobiol Aging. 2011;32:707–17.

    Article  CAS  PubMed  Google Scholar 

  39. Mandel SA, Amit T, Weinreb O, et al. Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther. 2008;14:352–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Levites Y, Weinre O, Maor G, et al. Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem. 2001;78:1073–82.

    Article  CAS  PubMed  Google Scholar 

  41. Jin CF, Shen SR Sr, Zhao BL. Different effects of five catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. J Agric Food Chem. 2001;49:6033–8.

    Article  CAS  PubMed  Google Scholar 

  42. Guo Q, Zhao B, Li M, et al. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta. 1996;1304:210–22.

    Article  CAS  PubMed  Google Scholar 

  43. Levites Y, Amit T, Mandel S, et al. Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (−)-epigallocatechin-3-gallate. FASEB J. 2003;17:952–4.

    Article  CAS  PubMed  Google Scholar 

  44. Bastianetto S, Yao ZX, Papadopoulos V, et al. Neuroprotective effects of green and black teas and their catechingallate esters against beta-amyloid induced toxicity. Eur J Neurosci. 2006;23:55–64.

    Article  PubMed  Google Scholar 

  45. Kuriyama S, Hozawa A, Ohmori K, Shimazu T, et al. Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project. Am J Clin Nutr. 2006;83(2):355–61.

    Article  CAS  PubMed  Google Scholar 

  46. Checkoway H, Powers K, Smith-Weller T, Franklin GM, Longstreth WT, Swanson PD. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol. 2002;155:732–8.

    Article  PubMed  Google Scholar 

  47. Seeram NP. Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem. 2008;56:627–9.

    Article  CAS  PubMed  Google Scholar 

  48. Subash S, Essa MM, Adawi S, Memon M, Manivasagam T, Akbar M. Neuroprotective effects of berry fruits on neurodegenerative diseases. Neural Regen Res. 2014;9:1557–66.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Galli RL, Bielinski DF, Szprengiel A, et al. Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol Aging. 2006;27:344–50.

    Article  CAS  PubMed  Google Scholar 

  50. Ramassamy C. Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol. 2006;545:51–64.

    Article  CAS  PubMed  Google Scholar 

  51. Papandreou MA, Dimakopoulou A, Linardaki ZI, et al. Effect of a polyphenol-rich wild blueberry extract on cognitive performance of mice, brain antioxidant markers and acetylcholinesterase activity. Behav Brain Res. 2009;198:352–8.

    Article  CAS  PubMed  Google Scholar 

  52. Joseph JA, Arendash G, Gordon M, et al. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer Disease Model. Nutr Neurosci. 2003;6:153–62.

    Article  CAS  PubMed  Google Scholar 

  53. Ono K, Hasegawa K, Naiki H, et al. Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β-amyloid fibrils in vitro. BBA Mol Basis Dis. 2004;1690:193–202.

    Article  CAS  Google Scholar 

  54. Mori T, Zadeh KR, Koyam N, et al. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem. 2012;287:6912–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bastianetto S, Krantic S, Quirion R, et al. Polyphenols as potential inhibitors of amyloid aggregation and toxicity: possible significance to Alzheimer’s disease. J Med Chem. 2008;8:429–35.

    CAS  Google Scholar 

  56. Pudio R, Bravo L, Calixto FL. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem. 2000;48:3396–402.

    Article  Google Scholar 

  57. Hamaguchi T, Ono K, Murase A, et al. Phenolic compounds prevent Alzheimer’s pathology through different effects on the amyloid-β aggregation pathway. Am J Pathol. 2009;175:2557–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim DS, Park SY, Kim JK. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1–42) insult. Neurosci Lett. 2001;303:57–61.

    Article  CAS  PubMed  Google Scholar 

  59. Ahmed T, Gilani AH, Hosseinmardi N, et al. Curcuminoids rescue long-term potentiation impaired by amyloid peptide in rat hippocampal slices. Synapse. 2011;65:572–82.

    Article  CAS  PubMed  Google Scholar 

  60. Lim GP, Chu T, Yang F, et al. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001;21:8370–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Evans AM, Fornasini G. Pharmacokinetics of L carnitine. Clin Pharmacokinet. 2003;42:941–67.

    Article  CAS  PubMed  Google Scholar 

  62. Calvini M, Carta A, Benedetti N, Iannuccelli M, Caruso G. Action of acetyl-L-carnitine in neurodegeneration and Alzheimer’s disease. Aging Cell Def Mech. 1992;663:483–6.

    Google Scholar 

  63. Tagliatela G, Angelucci L, Ramacci MT, Perez KW, Jackson GR, Polo JRP. Acetyl-l-carnitine enhances the response of PC12 cells to nerve growth factor. Dev Brain Res. 1991;59:221–30.

    Article  Google Scholar 

  64. Shenk JC, Liu J, Fischbach K, Xu K, Puchowicz M, Obrenovich ME, Gasimov E, Alvarez LM, Ames BN, LaManna JC, Aliev G. The effect of acetyl-L-carnitine and R-α-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer’s disease. J Neurol Sci. 2009;283:199–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Das DK, Mukherjee S, Ray D. Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev. 2010;15:467–77.

    Article  CAS  PubMed  Google Scholar 

  66. Kennedy DO, Wightman EL, Reay JL, et al. Effects of resveratrol on cerebral blood flow variables and cognitive performance in humans: a double-blind, placebo-controlled, crossover investigation. Am J Clin Nutr. 2010;91:1590–7.

    Article  CAS  PubMed  Google Scholar 

  67. Moosmann B, Skutella T, Beyer K, et al. Protective activity of aromatic amines and imines against oxidative nerve cell death. Biol Chem. 2001;382:1601–12.

    Article  CAS  PubMed  Google Scholar 

  68. Virgili M, Contestabile A. Partial neuroprotection of in vivo excitotoxic brain damage by chronic administration of the red wine antioxidant agent, trans-resveratrol in rats. Neurosci Lett. 2000;281:123–6.

    Article  CAS  PubMed  Google Scholar 

  69. Shraddha DR, Thangiah G, Gerad DG, Tom LB, Jeganathan RB. Neuroprotective effects of resveratrol in Alzheimer disease pathology. Front Aging Neurosci. 2014;6:218.

    Google Scholar 

  70. Shay KP, Moreau RF, Smith EJ, et al. Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta. 2009;1790:1149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Holmquist L, Stuchbury G, Berbaum K, et al. Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol Ther. 2007;113:154–64.

    Article  CAS  PubMed  Google Scholar 

  72. Sandra LS, Gemma C, Kate MW, Miguel AP, Atwood CS, Smith MA, Perry G. Chronic antioxidant therapy reduces oxidative stress in a mouse model of Alzheimer’s disease. Free Radic Res. 2009;43:156–64.

    Article  Google Scholar 

  73. Staehelin HB. Micronutrients and Alzheimer’s disease. Proc Nutr Soc. 2005;64:565–70.

    Article  CAS  PubMed  Google Scholar 

  74. Yang X, Qiang X, Li Y, Luo L, Xu R, et al. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Biorg Chem. 2017;71:305–14.

    Article  CAS  Google Scholar 

  75. Dgachi Y, Sokolov O, Luzet V, et al. Tetrahydropyranodiquinolin-8-amines as new, non hepatotoxic, antioxidant, and acetylcholinesterase inhibitors for Alzheimer’s disease therapy. Eur J Med Chem. 2017;126:576–58.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Department of chemistry, Pt. Ravishankar Shukla University, Raipur and Department of Chemistry, Indian Institute of Technology, Bombay.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N., Ghosh, K.K. (2019). Recent Advances in the Antioxidant Therapies for Alzheimer’s Disease: Emphasis on Natural Antioxidants. In: Singh, S., Joshi, N. (eds) Pathology, Prevention and Therapeutics of Neurodegenerative Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-0944-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0944-1_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0943-4

  • Online ISBN: 978-981-13-0944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics