Advertisement

Molecular Mechanisms of Neurodegeneration: Insights from the Studies of Genetic Model of Parkinson’s Disease

  • Nisha R. Dhanushkodi
  • M. Emdadul HaqueEmail author
Chapter

Abstract

Parkinson’s disease (PD), a neurodegenerative movement disorder, affects 1% of the population over the age of 60. Since the discovery of various genes associated with PD, there has been tremendous exploration on the molecular mechanisms involved in the pathogenesis of PD. Investigations on how these mutations cause PD and identification of new genetic risk factors have broadened our vision on PD. Autosomal dominant (SNCA, LRRK2) and recessive mutations (Parkin, PINK1, DJ-1) associated with PD have been explored in various invertebrate (Drosophila, C. elegans) and vertebrate (zebrafish, mouse, rat) genetic models. Although there is no direct evidence that these genes play a role in sporadic PD, a genetic contribution to the disease development cannot be neglected. Hence these studies provide cues for the mechanisms that contribute to sporadic PD, especially, in understanding the mechanisms of nigral degeneration and Lewy body formation that are hallmarks of PD pathology. This chapter also reviews different pathways affected by each of these genetic factors that contribute to the big picture of the molecular mechanisms of PD pathogenesis. However, there is a need to improve current genetic models of PD which will provide platforms for testing novel therapeutic approaches.

Keywords

Parkinson’s disease Neurodegeneration Lewy body Synuclein Dopamine Pink1 Parkin DJ-1 LRRK2 

Notes

Acknowledgments

The research grants support from the CMHS, United Arab Emirates University and the National Research foundation, United Arab Emirates to MEH is duly acknowledged.

References

  1. 1.
    Fahn S. Parkinson’s disease: 10 years of progress, 1997-2007. Mov Disord. 2010;25(Suppl 1):S2–14.CrossRefGoogle Scholar
  2. 2.
    Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a008888.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46:989–93.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-SYN in Lewy bodies. Nature. 1997;388:839–40.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Braak H, Muller CM, Rub U, et al. Pathology associated with sporadic Parkinson’s disease—where does it end? J Neural Transm Suppl. 2006;89–97.Google Scholar
  6. 6.
    Langston JW. The Parkinson’s complex: parkinsonism is just the tip of the iceberg. Ann Neurol. 2006;59:591–6.CrossRefGoogle Scholar
  7. 7.
    Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24:197–211.CrossRefGoogle Scholar
  8. 8.
    Savitt JM, Dawson VL Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006;116(7):1744–54.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in parkinsons disease. Nat Rev Neurosci. 2017;18:101–13.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dawson TM, Ko HS, Dawson VL. Genetic animal models of Parkinson’s disease. Neuron. 2010;66:646–61.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rosenthal N, Brown S. The mouse ascending: perspectives for human-disease models. Nat Cell Biol. 2007;9:993–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Landel CP, Chen SZ, Evans GA. Reverse genetics using transgenic mice. Annu Rev Physiol. 1990;52:841–51.CrossRefPubMedGoogle Scholar
  13. 13.
    Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992;89:5547–51.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sprengel R, Hasan MT. Tetracycline-controlled genetic switches. Handb Exp Pharmacol. 2007;49–72.Google Scholar
  15. 15.
    Kitada T, Tong Y, Gautier CA, Shen J. Absence of nigral degeneration in aged parkin/DJ-1/PINK1 triple knockout mice. J Neurochem. 2009;111:696–702.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee Y, Dawson VL, Dawson TM. Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb Perspect Med. 2012;2.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dave KD, De Silva S, Sheth NP, et al. Phenotypic characterization of recessive gene knockout rat models of Parkinson’s disease. Neurobiol Dis. 2014;70:190–203.CrossRefGoogle Scholar
  18. 18.
    West RJ, Furmston R, Williams CA, Elliott CJ. Neurophysiology of Drosophila models of Parkinson’s disease. Parkinsons Dis. 2015;2015:381281.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Whitworth AJ. Drosophila models of Parkinson’s disease. Adv Genet. 2011;73:1–50.Google Scholar
  20. 20.
    Feany MB, Bender WW. A Drosophila model of Parkinson’s disease. Nature. 2000;404:394–8.CrossRefGoogle Scholar
  21. 21.
    Guo M. Drosophila as a model to study mitochondrial dysfunction in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2:a009944.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-SYN gene identified in families with Parkinson’s disease. Science. 1997;276:2045–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kruger R, Kuhn W, al MT. Ala30Pro mutation in the gene encoding alpha-SYN in Parkinson’s disease. Nat Genet. 1998;18:106–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-SYN causes Parkinson and Lewy body dementia. Ann Neurol. 2004;55:164–73.CrossRefGoogle Scholar
  25. 25.
    Singleton AB, Farrer M, Johnson J, et al. alpha-SYN locus triplication causes Parkinson’s disease. Science. 2003;302:841.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Satake W, Nakabayashi Y, Mizuta I, et al. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet. 2009;41:1303–7.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ferreira M, Massano J. An updated review of Parkinson’s disease genetics and clinicopatholgical correlation. Acta Neurol Scand. 2017;135(3):273–84.CrossRefPubMedGoogle Scholar
  28. 28.
    Lee VM, Trojanowski JQ. Mechanisms of Parkinson’s disease linked to pathological alpha-SYN: new targets for drug discovery. Neuron. 2006;52:33–8.CrossRefPubMedGoogle Scholar
  29. 29.
    Volles MJ, Lansbury PT Jr. Zeroing in on the pathogenic form of alpha-SYN and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry. 2003;42:7871–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Fernagut PO, Chesselet MF. Alpha-SYN and transgenic mouse models. Neurobiol Dis. 2004;17:123–30.CrossRefPubMedGoogle Scholar
  31. 31.
    Giasson BI, Duda JE, Quinn SM, et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-SYN. Neuron. 2002;34:521–33.CrossRefPubMedGoogle Scholar
  32. 32.
    Song DD, Shults CW, Sisk A, Rockenstein E, Masliah E. Enhanced substantia nigra mitochondrial pathology in human alpha-SYN transgenic mice after treatment with MPTP. Exp Neurol. 2004;186:158–72.CrossRefGoogle Scholar
  33. 33.
    Kuwahara T, Koyama A, Gengyo-Ando K, et al. Familial Parkinson mutant alpha-SYN causes dopamine neuron dysfunction in transgenic Caenorhabditis elegans. J Biol Chem. 2006;281:334–40.CrossRefGoogle Scholar
  34. 34.
    Lakso M, Vartiainen S, Moilanen AM, et al. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-SYN. J Neurochem. 2003;86:165–72.CrossRefGoogle Scholar
  35. 35.
    Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008;7:97–109.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909.CrossRefGoogle Scholar
  37. 37.
    Martin LJ, Pan Y, Price AC, et al. Parkinson’s disease alpha-SYN transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 2006;26:41–50.CrossRefGoogle Scholar
  38. 38.
    Javed H, Menon S, Al-Mansoori K, et al. Development of non-viral vectors targeting the brain as a therapy for Parkinson’s disease and other brain disorders. Mol Ther. 2016;24(4):746–58.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Norris EH, Uryu K, Leight S, et al. Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. Am J Pathol. 2007;170:658–66.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of alpha-SYN impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283:9089–100.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Ko HS, von Coelln R, Sriram SR, et al. Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci. 2005;25:7968–78.CrossRefGoogle Scholar
  42. 42.
    Mandir AS, Przedborski S, Jackson-Lewis V, et al. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A. 1999;96:5774–9.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pan T, Kondo S, Le W, Jankovic J. The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain. 2008;131:1969–78.CrossRefGoogle Scholar
  44. 44.
    Biskup S, Gerlach M, Kupsch A, et al. Genes associated with Parkinson syndrome. J Neurol. 2008;255(Suppl 5):8–17.CrossRefGoogle Scholar
  45. 45.
    Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alpha-SYN display functional deficits in the nigrostriatal dopamine system. Neuron. 2000;25:239–52.CrossRefGoogle Scholar
  46. 46.
    Chandra S, Gallardo G, Fernandez-Chacon R, Schluter OM, Sudhof TC. Alpha-SYN cooperates with CSPalpha in preventing neurodegeneration. Cell. 2005;123:383–96.CrossRefGoogle Scholar
  47. 47.
    Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44:601–7.CrossRefGoogle Scholar
  48. 48.
    Biskup S, Moore DJ, Celsi F, et al. Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol. 2006;60:557–69.CrossRefGoogle Scholar
  49. 49.
    Sakaguchi-Nakashima A, Meir JY, Jin Y, Matsumoto K, Hisamoto N. LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Curr Biol. 2007;17:592–8.CrossRefGoogle Scholar
  50. 50.
    Greggio E, Jain S, Kingsbury A, et al. Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis. 2006;23:329–41.CrossRefGoogle Scholar
  51. 51.
    Saha S, Guillily MD, Ferree A, et al. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci. 2009;29:9210–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Venderova K, Kabbach G, Abdel-Messih E, et al. Leucine-rich repeat kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum Mol Genet. 2009;18:4390–404.CrossRefGoogle Scholar
  53. 53.
    Ramonet D, Daher JP, Lin BM, et al. Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One. 2011;6:e18568.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Lin X, Parisiadou L, Gu XL, et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-SYN. Neuron. 2009;64:807–27.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Wang D, Tang B, Zhao G, et al. Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol Neurodegener. 2008;3:3.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tong Y, Shen J. Genetic analysis of Parkinson’s disease-linked leucine-rich repeat kinase 2. Biochem Soc Trans. 2012;40:1042–6.CrossRefGoogle Scholar
  57. 57.
    Li Y, Liu W, Oo TF, et al. Mutant LRRK2 (R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci. 2009;12:826–8.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Lee BD, Shin JH, VanKampen J, et al. Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med. 2010;16:998–1000.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cookson MR, Bandmann O. Parkinson’s disease: insights from pathways. Hum Mol Genet. 2010;19:R21–7.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Andres-Mateos E, Mejias R, Sasaki M, et al. Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). J Neurosci. 2009;29:15846–50.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Prabhudesai S, Bensabeur FZ, Abdullah R, et al. LRRK2 knockdown in zebrafish causes developmental defects, neuronal loss, and SYN aggregation. J Neurosci Res. 2016;94:717–35.CrossRefGoogle Scholar
  62. 62.
    Shin N, Jeong H, Kwon J, et al. LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res. 2008;314:2055–65.CrossRefGoogle Scholar
  63. 63.
    Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature. 1998;392:605–8.CrossRefGoogle Scholar
  64. 64.
    Lucking CB, Durr A, Bonifati V, et al. Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med. 2000;342:1560–7.CrossRefGoogle Scholar
  65. 65.
    Gasser T. Mendelian forms of Parkinson’s disease. Biochim Biophys Acta. 2009;1792:587–96.CrossRefGoogle Scholar
  66. 66.
    Heutink P. PINK-1 and DJ-1—new genes for autosomal recessive Parkinson’s disease. J Neural Transm Suppl. 2006;215–9.Google Scholar
  67. 67.
    Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. 2000;25:302–5.CrossRefGoogle Scholar
  68. 68.
    LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ. Dopamine covalently modifies and functionally inactivates parkin. Nat Med. 2005;11:1214–21.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Yao D, Gu Z, Nakamura T, et al. Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci U S A. 2004;101:10810–4.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Greene JC, Whitworth AJ, Kuo I, et al. Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci U S A. 2003;100:4078–83.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Whitworth AJ, Theodore DA, Greene JC, et al. Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2005;102:8024–9.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Goldberg MS, Fleming SM, Palacino JJ, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem. 2003;278:43628–35.CrossRefGoogle Scholar
  73. 73.
    Itier JM, Ibanez P, Mena MA, et al. Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet. 2003;12:2277–91.CrossRefGoogle Scholar
  74. 74.
    Perez FA, Palmiter RD. Parkin-deficient mice are not a robust model of parkinsonism. Proc Natl Acad Sci U S A. 2005;102:2174–9.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    von Coelln R, Thomas B, Andrabi SA, et al. Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. J Neurosci. 2006;26:3685–96.CrossRefGoogle Scholar
  76. 76.
    Shin JH, Ko HS, Kang H, et al. PARIS (ZNF746) repression of PGC-1alpha contributes to neurodegeneration in Parkinson’s disease. Cell. 2011;144:689–702.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ko HS, Kim SW, Sriram SR, et al. Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J Biol Chem. 2006;281(24):16193–6.CrossRefPubMedGoogle Scholar
  78. 78.
    Lu XH, Fleming SM, Meurers B, et al. Bacterial artificial chromosome transgenic mice expressing a truncated mutant parkin exhibit age-dependent hypokinetic motor deficits, dopaminergic neuron degeneration, and accumulation of proteinase K-resistant alpha-SYN. J Neurosci. 2009;29:1962–76.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Sang TK, Chang HY, Lawless GM, et al. A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J Neurosci. 2007;27:981–92.CrossRefGoogle Scholar
  80. 80.
    Wang C, Lu R, Ouyang X, et al. Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci. 2007;27:8563–70.CrossRefGoogle Scholar
  81. 81.
    Narendra DP, Jin SM, Tanaka A, et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8:e1000298.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lim KL, Chew KC, Tan JM, et al. Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci. 2005;25:2002–9.CrossRefGoogle Scholar
  83. 83.
    Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science. 2007;315:201–5.CrossRefGoogle Scholar
  84. 84.
    West AB, Maidment NT. Genetics of parkin-linked disease. Hum Genet. 2004;114(4):327–36.CrossRefPubMedGoogle Scholar
  85. 85.
    Kubo SI, Kitami T, Noda S, et al. Parkin is associated with cellular vesicles. J Neurochem. 2001;78:42–54.CrossRefGoogle Scholar
  86. 86.
    Valente EM, Salvi S, Ialongo T, et al. PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol. 2004;56:336–41.CrossRefGoogle Scholar
  87. 87.
    Clark IE, Dodson MW, Jiang C, et al. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature. 2006;441:1162–6.CrossRefGoogle Scholar
  88. 88.
    Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature. 2006;441:1157–61.CrossRefGoogle Scholar
  89. 89.
    Poole AC, Thomas RE, Andrews LA, et al. The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A. 2008;105:1638–43.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Gispert S, Ricciardi F, Kurz A, et al. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One. 2009;4:e5777.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Kitada T, Pisani A, Porter DR, et al. Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci U S A. 2007;104:11441–6.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Zhou H, Falkenburger BH, Schulz JB, et al. Silencing of the Pink1 gene expression by conditional RNAi does not induce dopaminergic neuron death in mice. Int J Biol Sci. 2007;3:242–50.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Kelm-Nelson CA, Stevenson SA, Ciucci MR. Atp13a2 expression in the periaqueductal gray is decreased in the Pink1 -/- rat model of Parkinson disease. Neurosci Lett. 2016;621:75–82.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet. 2005;14:3477–92.CrossRefPubMedGoogle Scholar
  95. 95.
    Zhou C, Huang Y, Shao Y, et al. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A. 2008;105:12022–7.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Haque ME, Thomas KJ, D’Souza C, et al. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. PNAS. 2008;105(5):1716–21.CrossRefPubMedGoogle Scholar
  97. 97.
    Gandhi S, Wood-Kaczmar A, Yao Z, et al. PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell. 2009;33:627–38.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Pridgeon JW, Olzmann JA, Chin LS, Li L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol. 2007;5:e172.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Morais VA, Verstreken P, Roethig A, et al. Parkinson’s disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function. EMBO Mol Med. 2009;1(2):99–111.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Morais VA, Haddad D, Craessaerts K, et al. PINK1 loss-of-function mutations affect mitochondrial complex I activity via NdufA10 ubiquinone uncoupling. Science. 2014;344:203–7.CrossRefPubMedGoogle Scholar
  101. 101.
    Vos M, Esposito G, Edirisinghe JN, et al. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 2012;336:1306–10.CrossRefPubMedGoogle Scholar
  102. 102.
    Bonifati V, Rizzu P, Squitieri F, et al. DJ-1( PARK7), a novel gene for autosomal recessive, early onset parkinsonism. Neurol Sci. 2003;24:159–60.CrossRefPubMedGoogle Scholar
  103. 103.
    Moore DJ, Dawson VL, Dawson TM. Lessons from Drosophila models of DJ-1 deficiency. Sci Aging Knowl Environ. 2006;2006:pe2.CrossRefGoogle Scholar
  104. 104.
    Macedo MG, Anar B, Bronner IF, et al. The DJ-1L166P mutant protein associated with early onset Parkinson’s disease is unstable and forms higher-order protein complexes. Hum Mol Genet. 2003;12:2807–16.CrossRefPubMedGoogle Scholar
  105. 105.
    Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson’s disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet. 2005;14:2063–73.CrossRefPubMedGoogle Scholar
  106. 106.
    Kahle PJ, Waak J, Gasser T. DJ-1 and prevention of oxidative stress in Parkinson’s disease and other age-related disorders. Free Radic Biol Med. 2009;47:1354–61.CrossRefPubMedGoogle Scholar
  107. 107.
    Andres-Mateos E, Perier C, Zhang L, et al. DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci U S A. 2007;104:14807–12.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Van der Brug MP, Blackinton J, Chandran J, et al. RNA binding activity of the recessive parkinsonism protein DJ-1 supports involvement in multiple cellular pathways. Proc Natl Acad Sci U S A. 2008;105(29):10244–9.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Yang Y, Gehrke S, Haque ME, et al. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci U S A. 2005;102:13670–5.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron. 2005;45:489–96.CrossRefPubMedGoogle Scholar
  111. 111.
    Kim RH, Smith PD, Aleyasin H, et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A. 2005;102:5215–20.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101:9103–8.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Moore DJ, Zhang L, Troncoso J, et al. Association of DJ-1 and parkin mediated by pathogenic DJ-1 mutations and oxidative stress. Hum Mol Genet. 2005;14:71–84.CrossRefPubMedGoogle Scholar
  114. 114.
    Ito G, Ariga H, Nakagawa Y, Iwatsubo T. Roles of distinct cysteine residues in S-nitrosylation and dimerization of DJ-1. Biochem Biophys Res Commun. 2006;339:667–72.CrossRefPubMedGoogle Scholar
  115. 115.
    Guzman JN, Sanchez-Padilla J, Wokosin D, et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature. 2010;468:696–700.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Petrucelli L, O’Farrell C, Lockhart PJ, et al. Parkin protects against the toxicity associated with mutant alpha-SYN: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron. 2002;36:1007–19.CrossRefGoogle Scholar
  117. 117.
    Dagda RK, Cherra SJ 3rd, Kulich SM, et al. Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem. 2009;284:13843–55.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Cherra SJ 3rd, Dagda RK, Tandon A, Chu CT. Mitochondrial autophagy as a compensatory response to PINK1 deficiency. Autophagy. 2009;5:1213–4.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Apfeld J, Fontana W. Age-dependence and aging-dependence: neuronal loss and lifespan in a C. elegans model of Parkinson’s disease. Biology (Basel). 2017;7(1)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of BiochemistryCollege of Medicine and Health Sciences, UAE UniversityAl AinUAE

Personalised recommendations