Advertisement

Amyotrophic Lateral Sclerosis: Current Therapeutic Perspectives

  • Vijay KumarEmail author
  • Tara Kashav
  • Md. Imtaiyaz HassanEmail author
Chapter

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, characterized by progressive motor neuron degeneration, muscle weakness, paralysis, and ultimately death within a short period after diagnosis. The pathogenesis of ALS is mediated by diverse cellular pathways such as oxidative stress, mitochondrial dysfunction, excitotoxicity, and neuroinflammation. Advancement in genetic discoveries in ALS emphasizes that ALS is a syndrome rather than a single disorder. It is therefore utmost needed to better understand the underlying disease mechanism and etiology and search for neuroprotective agents that might delay disease onset and progression, extends survival, and ultimately reduces the burden of disease. In this chapter, we focus on studies of various small pharmacological compounds targeting the proposed pathogenic mechanisms of ALS and discuss their impact on disease progression. Furthermore, we also summarize the progress in the non-pharmacological therapy trials in ALS. Currently, no therapeutic effort seems to be successful, but recent findings in ALS will certainly help in the discovery of an effective treatment.

Keywords

Amyotrophic lateral sclerosis Pathomechanisms Neuroprotective agents Therapeutic intervention Stem cell therapy Precision medicine 

Notes

Acknowledgements

V.K. thanks the Department of Science of Technology, India for the award of DST-Fast track fellowship (SB/YS/LS-161/2014). M.I.H. thanks the Department of Science of Technology and Council of Scientific and Industrial Research (India) for financial support.

Conflict of interest: The authors have declared that there is no conflict of interest.

References

  1. 1.
    Mehta P, Kaye W, Bryan L, Larson T, Copeland T, Wu J, et al. Prevalence of amyotrophic lateral sclerosis-United States, 2012-2013. MMWR Surveill Summ. 2016;65(8):1–12.  https://doi.org/10.15585/mmwr.ss6508a1.CrossRefPubMedGoogle Scholar
  2. 2.
    Shaw PJ. Molecular and cellular pathways of neurodegeneration in motor neurone disease. J Neurol Neurosurg Psychiatry. 2005;76(8):1046–57.  https://doi.org/10.1136/jnnp.2004.048652. 76/8/1046 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Robberecht W, Philips T. The changing scene of amyotrophic lateral sclerosis. Nat Rev Neurosci. 2013;14(4):248–64.  https://doi.org/10.1038/nrn3430. nrn3430 [pii].CrossRefPubMedGoogle Scholar
  4. 4.
    Kumar V, Islam A, Hassan MI, Ahmad F. Delineating the relationship between amyotrophic lateral sclerosis and frontotemporal dementia: sequence and structure-based predictions. Biochim Biophys Acta. 2016;1862(9):1742–54.  https://doi.org/10.1016/j.bbadis.2016.06.011. S0925-4439(16)30153-3 [pii].CrossRefPubMedGoogle Scholar
  5. 5.
    Kumar V, Sami N, Kashav T, Islam A, Ahmad F, Hassan MI. Protein aggregation and neurodegenerative diseases: from theory to therapy. Eur J Med Chem. 2016;124:1105–20.  https://doi.org/10.1016/j.ejmech.2016.07.054. S0223-5234(16)30617-1 [pii].CrossRefPubMedGoogle Scholar
  6. 6.
    Bettini M, Vicens J, Giunta DH, Rugiero M, Cristiano E. Incidence and prevalence of amyotrophic lateral sclerosis in an HMO of Buenos Aires, Argentina. Amyotroph Lateral Scler Frontotemporal Degener. 2013;14(7–8):598–603.  https://doi.org/10.3109/21678421.2013.808225.CrossRefPubMedGoogle Scholar
  7. 7.
    Doi Y, Atsuta N, Sobue G, Morita M, Nakano I. Prevalence and incidence of amyotroph lateral scler in Japan. J Epidemiol. 2014;24(6):494–9. DN/JST.JSTAGE/jea/JE20140059 [pii].CrossRefPubMedGoogle Scholar
  8. 8.
    Vazquez MC, Ketzoian C, Legnani C, Rega I, Sanchez N, Perna A, et al. Incidence and prevalence of amyotrophic lateral sclerosis in Uruguay: a population-based study. Neuroepidemiology. 2008;30(2):105–11.  https://doi.org/10.1159/000120023. 000120023 [pii].CrossRefPubMedGoogle Scholar
  9. 9.
    Swinnen B, Robberecht W. The phenotypic variability of amyotrophic lateral sclerosis. Nat Rev Neurol. 2014;10(11):661–70.  https://doi.org/10.1038/nrneurol.2014.184. nrneurol.2014.184 [pii].CrossRefPubMedGoogle Scholar
  10. 10.
    Ingre C, Roos PM, Piehl F, Kamel F, Fang F. Risk factors for amyotrophic lateral sclerosis. Clin Epidemiol. 2015;7:181–93.  https://doi.org/10.2147/CLEP.S37505. clep-7-181 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ferraiuolo L, Kirby J, Grierson AJ, Sendtner M, Shaw PJ. Molecular pathways of motor neuron injury in amyotrophic lateral sclerosis. Nat Rev Neurol. 2011;7(11):616–30.  https://doi.org/10.1038/nrneurol.2011.152. nrneurol.2011.152 [pii].CrossRefGoogle Scholar
  12. 12.
    Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci. 2006;7(9):710–23.  https://doi.org/10.1038/nrn1971. nrn1971 [pii].CrossRefPubMedGoogle Scholar
  13. 13.
    Dunkel P, Chai CL, Sperlagh B, Huleatt PB, Matyus P. Clinical utility of neuroprotective agents in neurodegenerative diseases: current status of drug development for Alzheimer’s, Parkinson’s and Huntington’s diseases, and amyotrophic lateral sclerosis. Expert Opin Investig Drugs. 2012;21(9):1267–308.  https://doi.org/10.1517/13543784.2012.703178.CrossRefPubMedGoogle Scholar
  14. 14.
    Kumar V, Islam A, Hassan MI, Ahmad F. Therapeutic progress in amyotrophic lateral sclerosis-beginning to learning. Eur J Med Chem. 2016;121:903–17.  https://doi.org/10.1016/j.ejmech.2016.06.017. S0223-5234(16)30495-0 [pii].CrossRefPubMedGoogle Scholar
  15. 15.
    Mancuso R, Navarro X. Amyotrophic lateral sclerosis: current perspectives from basic research to the clinic. Prog Neurobiol. 2015;133:1–26.  https://doi.org/10.1016/j.pneurobio.2015.07.004. S0301-0082(15)00078-7 [pii].CrossRefPubMedGoogle Scholar
  16. 16.
    Moujalled D, White AR. Advances in the development of disease-modifying treatments for amyotrophic lateral sclerosis. CNS Drugs. 2016;30(3):227–43.  https://doi.org/10.1007/s40263-016-0317-8. 10.1007/s40263-016-0317-8 [pii].CrossRefPubMedGoogle Scholar
  17. 17.
    DeLoach A, Cozart M, Kiaei A, Kiaei M. A retrospective review of the progress in amyotrophic lateral sclerosis drug discovery over the last decade and a look at the latest strategies. Expert Opin Drug Discov. 2015;10(10):1099–118.  https://doi.org/10.1517/17460441.2015.1067197.CrossRefPubMedGoogle Scholar
  18. 18.
    Bucchia M, Ramirez A, Parente V, Simone C, Nizzardo M, Magri F, et al. Therapeutic development in amyotrophic lateral sclerosis. Clin Ther. 2015;37(3):668–80.  https://doi.org/10.1016/j.clinthera.2014.12.020. S0149-2918(15)00010-7 [pii].CrossRefPubMedGoogle Scholar
  19. 19.
    Pandya RS, Zhu H, Li W, Bowser R, Friedlander RM, Wang X. Therapeutic neuroprotective agents for amyotrophic lateral sclerosis. Cell Mol Life Sci. 2013;70(24):4729–45.  https://doi.org/10.1007/s00018-013-1415-0.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Nicholson KA, Cudkowicz ME, Berry JD. Clinical trial designs in amyotrophic lateral sclerosis: does one design fit all? Neurotherapeutics. 2015;12(2):376–83.  https://doi.org/10.1007/s13311-015-0341-2.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Goyal NA, Mozaffar T. Experimental trials in amyotrophic lateral sclerosis: a review of recently completed, ongoing and planned trials using existing and novel drugs. Expert Opin Investig Drugs. 2014;23(11):1541–51.  https://doi.org/10.1517/13543784.2014.933807.CrossRefPubMedGoogle Scholar
  22. 22.
    Matyja E, Taraszewska A, Naganska E, Rafalowska J, Gebarowska J. Astroglial alterations in amyotrophic lateral sclerosis (ALS) model of slow glutamate excitotoxicity in vitro. Folia Neuropathol. 2006;44(3):183–90. 6765 [pii].PubMedGoogle Scholar
  23. 23.
    Kawahara Y, Kwak S. Excitotoxicity and ALS: what is unique about the AMPA receptors expressed on spinal motor neurons? Amyotroph Lateral Scler Other Motor Neuron Disord. 2005;6(3):131–44.  https://doi.org/10.1080/14660820510037872. X145V756361P1315 [pii].CrossRefPubMedGoogle Scholar
  24. 24.
    Guo H, Lai L, Butchbach ME, Stockinger MP, Shan X, Bishop GA, et al. Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum Mol Genet. 2003;12(19):2519–32.  https://doi.org/10.1093/hmg/ddg267. ddg267 [pii].CrossRefPubMedGoogle Scholar
  25. 25.
    Zhao P, Ignacio S, Beattie EC, Abood ME. Altered presymptomatic AMPA and cannabinoid receptor trafficking in motor neurons of ALS model mice: implications for excitotoxicity. Eur J Neurosci. 2008;27(3):572–9.  https://doi.org/10.1111/j.1460-9568.2008.06041.x. EJN6041 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Arundine M, Tymianski M. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium. 2003;34(4–5):325–37. S0143416003001416 [pii].CrossRefPubMedGoogle Scholar
  27. 27.
    Perry TL, Krieger C, Hansen S, Eisen A. Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol. 1990;28(1):12–7.  https://doi.org/10.1002/ana.410280105.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Shaw PJ, Forrest V, Ince PG, Richardson JP, Wastell HJ. CSF and plasma amino acid levels in motor neuron disease: elevation of CSF glutamate in a subset of patients. Neurodegeneration. 1995;4(2):209–16. S1055-8330(85)70026-8 [pii].CrossRefPubMedGoogle Scholar
  29. 29.
    Ludolph AC, Jesse S. Evidence-based drug treatment in amyotrophic lateral sclerosis and upcoming clinical trials. Ther Adv Neurol Disord. 2009;2(5):319–26.  https://doi.org/10.1177/1756285609336399.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lamanauskas N, Nistri A. Riluzole blocks persistent Na+ and Ca2+ currents and modulates release of glutamate via presynaptic NMDA receptors on neonatal rat hypoglossal motoneurons in vitro. Eur J Neurosci. 2008;27(10):2501–14.  https://doi.org/10.1111/j.1460-9568.2008.06211.x. EJN6211 [pii].CrossRefGoogle Scholar
  31. 31.
    Doble A. The pharmacology and mechanism of action of riluzole. Neurology. 1996;47(6 Suppl 4):S233–41.CrossRefGoogle Scholar
  32. 32.
    Nagoshi N, Nakashima H, Fehlings MG. Riluzole as a neuroprotective drug for spinal cord injury: from bench to bedside. Molecules. 2015;20(5):7775–89.  https://doi.org/10.3390/molecules20057775. molecules20057775 [pii].CrossRefGoogle Scholar
  33. 33.
    Shelton RC, Osuntokun O, Heinloth AN, Corya SA. Therapeutic options for treatment-resistant depression. CNS Drugs. 2010;24(2):131–61.  https://doi.org/10.2165/11530280-000000000-00000.CrossRefGoogle Scholar
  34. 34.
    Choudry RB, Cudkowicz ME. Clinical trials in amyotrophic lateral sclerosis: the tenuous past and the promising future. J Clin Pharmacol. 2005;45(12):1334–44.  https://doi.org/10.1177/0091270005282631. 45/12/1334 [pii].CrossRefGoogle Scholar
  35. 35.
    Rothstein JD, Van Kammen M, Levey AI, Martin LJ, Kuncl RW. Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Ann Neurol. 1995;38(1):73–84.  https://doi.org/10.1002/ana.410380114.CrossRefGoogle Scholar
  36. 36.
    Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. Beta-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature. 2005;433(7021):73–7.  https://doi.org/10.1038/nature03180. nature03180 [pii].CrossRefGoogle Scholar
  37. 37.
    Beghi E, Bendotti C, Mennini T. New ideas for therapy in ALS: critical considerations. Amyotroph Lateral Scler 2006;7(2):126-127; discussion 7.  https://doi.org/10.1080/14660820510012040 nature03180 [pii].CrossRefGoogle Scholar
  38. 38.
    Fontana AC. Current approaches to enhance glutamate transporter function and expression. J Neurochem. 2015;134(6):982–1007.  https://doi.org/10.1111/jnc.13200.CrossRefGoogle Scholar
  39. 39.
    Berry JD, Shefner JM, Conwit R, Schoenfeld D, Keroack M, Felsenstein D, et al. Design and initial results of a multi-phase randomized trial of ceftriaxone in amyotrophic lateral sclerosis. PLoS One. 2013;8(4):e61177.  https://doi.org/10.1371/journal.pone.0061177. PONE-D-12-30929 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Paizs M, Tortarolo M, Bendotti C, Engelhardt JI, Siklos L. Talampanel reduces the level of motoneuronal calcium in transgenic mutant SOD1 mice only if applied presymptomatically. Amyotroph Lateral Scler. 2011;12(5):340–4.  https://doi.org/10.3109/17482968.2011.584627.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Pascuzzi RM, Shefner J, Chappell AS, Bjerke JS, Tamura R, Chaudhry V, et al. A phase II trial of talampanel in subjects with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2010;11(3):266–71.  https://doi.org/10.3109/17482960903307805.CrossRefGoogle Scholar
  42. 42.
    Wictorin K, Widner H. Memantine and reduced time with dyskinesia in Parkinson’s disease. Acta Neurol Scand. 2016;133(5):355–60.  https://doi.org/10.1111/ane.12468.CrossRefGoogle Scholar
  43. 43.
    Hu S, Yu X, Chen S, Clay E, Toumi M, Milea D. Memantine for treatment of moderate or severe Alzheimer’s disease patients in urban China: clinical and economic outcomes from a health economic model. Expert Rev Pharmacoecon Outcomes Res. 2015;15(4):565–78.  https://doi.org/10.1586/14737167.2015.1065734.CrossRefGoogle Scholar
  44. 44.
    Lipton SA. Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov. 2006;5(2):160–70.  https://doi.org/10.1038/nrd1958. nrd1958 [pii].CrossRefGoogle Scholar
  45. 45.
    Chen HS, Pellegrini JW, Aggarwal SK, Lei SZ, Warach S, Jensen FE, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci. 1992;12(11):4427–36.CrossRefGoogle Scholar
  46. 46.
    Wang R, Zhang D. Memantine prolongs survival in an amyotrophic lateral sclerosis mouse model. Eur J Neurosci. 2005;22(9):2376–80.  https://doi.org/10.1111/j.1460-9568.2005.04431.x. EJN4431 [pii].CrossRefGoogle Scholar
  47. 47.
    Barber SC, Shaw PJ. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target. Free Radic Biol Med. 2010;48(5):629–41.  https://doi.org/10.1016/j.freeradbiomed.2009.11.018. S0891-5849(09)00731-X [pii].CrossRefGoogle Scholar
  48. 48.
    Parakh S, Spencer DM, Halloran MA, Soo KY, Atkin JD. Redox regulation in amyotrophic lateral sclerosis. Oxid Med Cell Longev. 2013;2013:408681.  https://doi.org/10.1155/2013/408681.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Shaw PJ, Ince PG, Falkous G, Mantle D. Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol. 1995;38(4):691–5.  https://doi.org/10.1002/ana.410380424.CrossRefGoogle Scholar
  50. 50.
    Ferrante RJ, Browne SE, Shinobu LA, Bowling AC, Baik MJ, MacGarvey U, et al. Evidence of increased oxidative damage in both sporadic and familial amyotrophic lateral sclerosis. J Neurochem. 1997;69(5):2064–74.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Abe K, Pan LH, Watanabe M, Kato T, Itoyama Y. Induction of nitrotyrosine-like immunoreactivity in the lower motor neuron of amyotrophic lateral sclerosis. Neurosci Lett. 1995;199(2):152–4. 0304394095120397 [pii].CrossRefGoogle Scholar
  52. 52.
    Abe K, Pan LH, Watanabe M, Konno H, Kato T, Itoyama Y. Upregulation of protein-tyrosine nitration in the anterior horn cells of amyotrophic lateral sclerosis. Neurol Res. 1997;19(2):124–8.CrossRefGoogle Scholar
  53. 53.
    Ihara Y, Nobukuni K, Takata H, Hayabara T. Oxidative stress and metal content in blood and cerebrospinal fluid of amyotrophic lateral sclerosis patients with and without a Cu, Zn-superoxide dismutase mutation. Neurol Res. 2005;27(1):105–8.  https://doi.org/10.1179/016164105X18430.CrossRefGoogle Scholar
  54. 54.
    Smith RG, Henry YK, Mattson MP, Appel SH. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis. Ann Neurol. 1998;44(4):696–9.  https://doi.org/10.1002/ana.410440419.CrossRefGoogle Scholar
  55. 55.
    Ganai SA. Small-molecule modulation of HDAC6 activity: the propitious therapeutic strategy to vanquish neurodegenerative disorders. Curr Med Chem. 2017;24(37):4104–20.  https://doi.org/10.2174/0929867324666170209104030. CMC-EPUB-81646 [pii].
  56. 56.
    Oldfield V, Keating GM, Perry CM. Rasagiline: a review of its use in the management of Parkinson’s disease. Drugs. 2007;67(12):1725–47. 67126 [pii].CrossRefGoogle Scholar
  57. 57.
    Waibel S, Reuter A, Malessa S, Blaugrund E, Ludolph AC. Rasagiline alone and in combination with riluzole prolongs survival in an ALS mouse model. J Neurol. 2004;251(9):1080–4.  https://doi.org/10.1007/s00415-004-0481-5.CrossRefGoogle Scholar
  58. 58.
    Ito H, Wate R, Zhang J, Ohnishi S, Kaneko S, Nakano S, et al. Treatment with edaravone, initiated at symptom onset, slows motor decline and decreases SOD1 deposition in ALS mice. Exp Neurol. 2008;213(2):448–55.  https://doi.org/10.1016/j.expneurol.2008.07.017. S0014-4886(08)00294-X [pii].CrossRefGoogle Scholar
  59. 59.
    Miquel E, Cassina A, Martinez-Palma L, Souza JM, Bolatto C, Rodriguez-Bottero S, et al. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic Biol Med. 2014;70:204–13.  https://doi.org/10.1016/j.freeradbiomed.2014.02.019. S0891-5849(14)00096-3 [pii].CrossRefGoogle Scholar
  60. 60.
    Kaufmann P, Thompson JL, Levy G, Buchsbaum R, Shefner J, Krivickas LS, et al. Phase II trial of CoQ10 for ALS finds insufficient evidence to justify phase III. Ann Neurol. 2009;66(2):235–44.  https://doi.org/10.1002/ana.21743.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wang Q, Zhang X, Chen S, Zhang S, Youdium M, Le W. Prevention of motor neuron degeneration by novel iron chelators in SOD1(G93A) transgenic mice of amyotrophic lateral sclerosis. Neurodegener Dis. 2011;8(5):310–21.  https://doi.org/10.1159/000323469. 000323469 [pii].CrossRefGoogle Scholar
  62. 62.
    Kupershmidt L, Weinreb O, Amit T, Mandel S, Bar-Am O, Youdim MB. Novel molecular targets of the neuroprotective/neurorescue multimodal iron chelating drug M30 in the mouse brain. Neuroscience. 2011;189:345–58.  https://doi.org/10.1016/j.neuroscience.2011.03.040. S0306-4522(11)00322-8 [pii].CrossRefGoogle Scholar
  63. 63.
    Tanaka K, Kanno T, Yanagisawa Y, Yasutake K, Hadano S, Yoshii F, et al. Bromocriptine methylate suppresses glial inflammation and moderates disease progression in a mouse model of amyotrophic lateral sclerosis. Exp Neurol. 2011;232(1):41–52.  https://doi.org/10.1016/j.expneurol.2011.08.001. S0014-4886(11)00264-0 [pii].CrossRefGoogle Scholar
  64. 64.
    Khandelwal PJ, Herman AM, Moussa CE. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol. 2011;238(1–2):1–11.  https://doi.org/10.1016/j.jneuroim.2011.07.002. S0165-5728(11)00192-5 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yong VW, Rivest S. Taking advantage of the systemic immune system to cure brain diseases. Neuron. 2009;64(1):55–60.  https://doi.org/10.1016/j.neuron.2009.09.035. S0896-6273(09)00746-6 [pii].CrossRefGoogle Scholar
  66. 66.
    Troost D, Van den Oord JJ, Vianney de Jong JM. Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol. 1990;16(5):401–10.CrossRefGoogle Scholar
  67. 67.
    Zhao W, Beers DR, Appel SH. Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J Neuroimmune Pharmacol. 2013;8(4):888–99.  https://doi.org/10.1007/s11481-013-9489-x.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Hensley K, Mhatre M, Mou S, Pye QN, Stewart C, West M, et al. On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal. 2006;8(11–12):2075–87.  https://doi.org/10.1089/ars.2006.8.2075.CrossRefGoogle Scholar
  69. 69.
    Haidet-Phillips AM, Hester ME, Miranda CJ, Meyer K, Braun L, Frakes A, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol. 2011;29(9):824–8.  https://doi.org/10.1038/nbt.1957. nbt.1957 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Trott A, West JD, Klaic L, Westerheide SD, Silverman RB, Morimoto RI, et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell. 2008;19(3):1104–12.  https://doi.org/10.1091/mbc.E07-10-1004. E07-10-1004 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Kiaei M, Kipiani K, Petri S, Chen J, Calingasan NY, Beal MF. Celastrol blocks neuronal cell death and extends life in transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis. 2005;2(5):246–54.  https://doi.org/10.1159/000090364. 90364 [pii].CrossRefGoogle Scholar
  72. 72.
    Hensley K, Floyd RA, Gordon B, Mou S, Pye QN, Stewart C, et al. Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. J Neurochem. 2002;82(2):365–74.CrossRefGoogle Scholar
  73. 73.
    Poloni M, Facchetti D, Mai R, Micheli A, Agnoletti L, Francolini G, et al. Circulating levels of tumour necrosis factor-alpha and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis. Neurosci Lett. 2000;287(3):211–4. S0304394000011770 [pii].CrossRefGoogle Scholar
  74. 74.
    Yoshihara T, Ishigaki S, Yamamoto M, Liang Y, Niwa J, Takeuchi H, et al. Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem. 2002;80(1):158–67.CrossRefGoogle Scholar
  75. 75.
    Kiaei M, Petri S, Kipiani K, Gardian G, Choi DK, Chen J, et al. Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis. J Neurosci. 2006;26(9):2467–73.  https://doi.org/10.1523/JNEUROSCI.5253-05.2006. 26/9/2467 [pii].CrossRefGoogle Scholar
  76. 76.
    Drachman DB, Rothstein JD. Inhibition of cyclooxygenase-2 protects motor neurons in an organotypic model of amyotrophic lateral sclerosis. Ann Neurol. 2000;48(5):792–5.CrossRefGoogle Scholar
  77. 77.
    Almer G, Guegan C, Teismann P, Naini A, Rosoklija G, Hays AP, et al. Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol. 2001;49(2):176–85.CrossRefGoogle Scholar
  78. 78.
    Yasojima K, Tourtellotte WW, McGeer EG, McGeer PL. Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology. 2001;57(6):952–6.CrossRefGoogle Scholar
  79. 79.
    Drachman DB, Frank K, Dykes-Hoberg M, Teismann P, Almer G, Przedborski S, et al. Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS. Ann Neurol. 2002;52(6):771–8.  https://doi.org/10.1002/ana.10374.CrossRefGoogle Scholar
  80. 80.
    Cudkowicz ME, Shefner JM, Schoenfeld DA, Zhang H, Andreasson KI, Rothstein JD, et al. Trial of celecoxib in amyotrophic lateral sclerosis. Ann Neurol. 2006;60(1):22–31.  https://doi.org/10.1002/ana.20903.CrossRefPubMedGoogle Scholar
  81. 81.
    Boillee S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron. 2006;52(1):39–59.  https://doi.org/10.1016/j.neuron.2006.09.018. S0896-6273(06)00725-2 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Gal J, Strom AL, Kilty R, Zhang F, Zhu H. p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J Biol Chem. 2007;282(15):11068–77.  https://doi.org/10.1074/jbc.M608787200. M608787200 [pii].CrossRefPubMedGoogle Scholar
  83. 83.
    Maekawa S, Leigh PN, King A, Jones E, Steele JC, Bodi I, et al. TDP-43 is consistently co-localized with ubiquitinated inclusions in sporadic and Guam amyotrophic lateral sclerosis but not in familial amyotrophic lateral sclerosis with and without SOD1 mutations. Neuropathology. 2009;29(6):672–83.  https://doi.org/10.1111/j.1440-1789.2009.01029.x. NEU1029 [pii].CrossRefPubMedGoogle Scholar
  84. 84.
    Mendonca DM, Chimelli L, Martinez AM. Expression of ubiquitin and proteasome in motorneurons and astrocytes of spinal cords from patients with amyotrophic lateral sclerosis. Neurosci Lett. 2006;404(3):315–9.  https://doi.org/10.1016/j.neulet.2006.06.009. S0304-3940(06)00563-5 [pii].CrossRefPubMedGoogle Scholar
  85. 85.
    Bennett EJ, Bence NF, Jayakumar R, Kopito RR. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol Cell. 2005;17(3):351–65.  https://doi.org/10.1016/j.molcel.2004.12.021. S1097276505010087 [pii].CrossRefPubMedGoogle Scholar
  86. 86.
    Rossi D, Brambilla L, Valori CF, Roncoroni C, Crugnola A, Yokota T, et al. Focal degeneration of astrocytes in amyotrophic lateral sclerosis. Cell Death Differ. 2008;15(11):1691–700.  https://doi.org/10.1038/cdd.2008.99. cdd200899 [pii].CrossRefPubMedGoogle Scholar
  87. 87.
    Phukan J. Arimoclomol, a coinducer of heat shock proteins for the potential treatment of amyotrophic lateral sclerosis. IDrugs. 2010;13(7):482–96.PubMedGoogle Scholar
  88. 88.
    Kieran D, Kalmar B, Dick JR, Riddoch-Contreras J, Burnstock G, Greensmith L. Treatment with arimoclomol, a coinducer of heat shock proteins, delays disease progression in ALS mice. Nat Med. 2004;10(4):402–5.  https://doi.org/10.1038/nm1021. nm1021 [pii].CrossRefPubMedGoogle Scholar
  89. 89.
    Kalmar B, Novoselov S, Gray A, Cheetham ME, Margulis B, Greensmith L. Late stage treatment with arimoclomol delays disease progression and prevents protein aggregation in the SOD1 mouse model of ALS. J Neurochem. 2008;107(2):339–50.  https://doi.org/10.1111/j.1471-4159.2008.05595.x. JNC5595 [pii].CrossRefPubMedGoogle Scholar
  90. 90.
    Cudkowicz ME, Shefner JM, Simpson E, Grasso D, Yu H, Zhang H, et al. Arimoclomol at dosages up to 300 mg/day is well tolerated and safe in amyotrophic lateral sclerosis. Muscle Nerve. 2008;38(1):837–44.  https://doi.org/10.1002/mus.21059.CrossRefPubMedGoogle Scholar
  91. 91.
    Lanka V, Wieland S, Barber J, Cudkowicz M. Arimoclomol: a potential therapy under development for ALS. Expert Opin Investig Drugs. 2009;18(12):1907–18.  https://doi.org/10.1517/13543780903357486.CrossRefPubMedGoogle Scholar
  92. 92.
    Wright PD, Huang M, Weiss A, Matthews J, Wightman N, Glicksman M, et al. Screening for inhibitors of the SOD1 gene promoter: pyrimethamine does not reduce SOD1 levels in cell and animal models. Neurosci Lett. 2010;482(3):188–92.  https://doi.org/10.1016/j.neulet.2010.07.020. S0304-3940(10)00921-3 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML, et al. Lithium delays progression of amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2008;105(6):2052–7.  https://doi.org/10.1073/pnas.0708022105. 0708022105 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Caldero J, Brunet N, Tarabal O, Piedrafita L, Hereu M, Ayala V, et al. Lithium prevents excitotoxic cell death of motoneurons in organotypic slice cultures of spinal cord. Neuroscience. 2010;165(4):1353–69.  https://doi.org/10.1016/j.neuroscience.2009.11.034. S0306-4522(09)01880-6 [pii].CrossRefPubMedGoogle Scholar
  95. 95.
    Chen RW, Qin ZH, Ren M, Kanai H, Chalecka-Franaszek E, Leeds P, et al. Regulation of c-Jun N-terminal kinase, p38 kinase and AP-1 DNA binding in cultured brain neurons: roles in glutamate excitotoxicity and lithium neuroprotection. J Neurochem. 2003;84(3):566–75. 1548 [pii].CrossRefPubMedGoogle Scholar
  96. 96.
    Gill A, Kidd J, Vieira F, Thompson K, Perrin S. No benefit from chronic lithium dosing in a sibling-matched, gender balanced, investigator-blinded trial using a standard mouse model of familial ALS. PLoS One. 2009;4(8):e6489.  https://doi.org/10.1371/journal.pone.0006489.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Aggarwal SP, Zinman L, Simpson E, McKinley J, Jackson KE, Pinto H, et al. Safety and efficacy of lithium in combination with riluzole for treatment of amyotrophic lateral sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010;9(5):481–8.  https://doi.org/10.1016/S1474-4422(10)70068-5. S1474-4422(10)70068-5 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Di Carlo M, Giacomazza D, Picone P, Nuzzo D, San Biagio PL. Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic Res. 2012;46(11):1327–38.  https://doi.org/10.3109/10715762.2012.714466.CrossRefPubMedGoogle Scholar
  99. 99.
    Keating DJ. Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem. 2008;104(2):298–305.  https://doi.org/10.1111/j.1471-4159.2007.04997.x. JNC4997 [pii].CrossRefPubMedGoogle Scholar
  100. 100.
    Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006;443(7113):787–95.  https://doi.org/10.1038/nature05292. nature05292 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Wiedemann FR, Manfredi G, Mawrin C, Beal MF, Schon EA. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J Neurochem. 2002;80(4):616–25. 731 [pii].CrossRefPubMedGoogle Scholar
  102. 102.
    Wiedemann FR, Winkler K, Kuznetsov AV, Bartels C, Vielhaber S, Feistner H, et al. Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J Neurol Sci. 1998;156(1):65–72. S0022510X98000082 [pii].CrossRefPubMedGoogle Scholar
  103. 103.
    Damiano M, Starkov AA, Petri S, Kipiani K, Kiaei M, Mattiazzi M, et al. Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem. 2006;96(5):1349–61.  https://doi.org/10.1111/j.1471-4159.2006.03619.x. JNC3619 [pii].CrossRefPubMedGoogle Scholar
  104. 104.
    Pattee GL, Post GR, Gerber RE, Bennett JP Jr. Reduction of oxidative stress in amyotrophic lateral sclerosis following pramipexole treatment. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4(2):90–5.CrossRefPubMedGoogle Scholar
  105. 105.
    Bozik ME, Mather JL, Kramer WG, Gribkoff VK, Ingersoll EW. Safety, tolerability, and pharmacokinetics of KNS-760704 (dexpramipexole) in healthy adult subjects. J Clin Pharmacol. 2011;51(8):1177–85.  https://doi.org/10.1177/0091270010379412. 0091270010379412 [pii].CrossRefPubMedGoogle Scholar
  106. 106.
    Gribkoff VK, Bozik ME. KNS-760704 [(6R)-4,5,6,7-tetrahydro-N6-propyl-2, 6-benzothiazole-diamine dihydrochloride monohydrate] for the treatment of amyotrophic lateral sclerosis. CNS Neurosci Ther. 2008;14(3):215–26.  https://doi.org/10.1111/j.1755-5949.2008.00048.x. CNS048 [pii].CrossRefPubMedGoogle Scholar
  107. 107.
    Martin LJ. Olesoxime, a cholesterol-like neuroprotectant for the potential treatment of amyotrophic lateral sclerosis. IDrugs. 2010;13(8):568–80.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Rovini A, Carre M, Bordet T, Pruss RM, Braguer D. Olesoxime prevents microtubule-targeting drug neurotoxicity: selective preservation of EB comets in differentiated neuronal cells. Biochem Pharmacol. 2010;80(6):884–94.  https://doi.org/10.1016/j.bcp.2010.04.018. S0006-2952(10)00292-3 [pii].CrossRefPubMedGoogle Scholar
  109. 109.
    Bordet T, Buisson B, Michaud M, Drouot C, Galea P, Delaage P, et al. Identification and characterization of cholest-4-en-3-one, oxime (TRO19622), a novel drug candidate for amyotrophic lateral sclerosis. J Pharmacol Exp Ther. 2007;322(2):709–20.  https://doi.org/10.1124/jpet.107.123000. jpet.107.123000 [pii].CrossRefPubMedGoogle Scholar
  110. 110.
    Klivenyi P, Ferrante RJ, Matthews RT, Bogdanov MB, Klein AM, Andreassen OA, et al. Neuroprotective effects of creatine in a transgenic animal model of amyotrophic lateral sclerosis. Nat Med. 1999;5(3):347–50.  https://doi.org/10.1038/6568.CrossRefGoogle Scholar
  111. 111.
    Groeneveld GJ, Veldink JH, van der Tweel I, Kalmijn S, Beijer C, de Visser M, et al. A randomized sequential trial of creatine in amyotrophic lateral sclerosis. Ann Neurol. 2003;53(4):437–45.  https://doi.org/10.1002/ana.10554.CrossRefGoogle Scholar
  112. 112.
    Rosenfeld J, King RM, Jackson CE, Bedlack RS, Barohn RJ, Dick A, et al. Creatine monohydrate in ALS: effects on strength, fatigue, respiratory status and ALSFRS. Amyotroph Lateral Scler. 2008;9(5):266–72.  https://doi.org/10.1080/17482960802028890. 791967188 [pii].CrossRefGoogle Scholar
  113. 113.
    Shefner JM, Cudkowicz ME, Schoenfeld D, Conrad T, Taft J, Chilton M, et al. A clinical trial of creatine in ALS. Neurology. 2004;63(9):1656–61. 63/9/1656 [pii].CrossRefGoogle Scholar
  114. 114.
    Pasinelli P, Houseweart MK, Brown RH Jr, Cleveland DW. Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A. 2000;97(25):13901–6.  https://doi.org/10.1073/pnas.240305897. 240305897 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Friedlander RM. Apoptosis and caspases in neurodegenerative diseases. N Engl J Med. 2003;348(14):1365–75.  https://doi.org/10.1056/NEJMra022366. 348/14/1365 [pii].CrossRefGoogle Scholar
  116. 116.
    Reyes NA, Fisher JK, Austgen K, VandenBerg S, Huang EJ, Oakes SA. Blocking the mitochondrial apoptotic pathway preserves motor neuron viability and function in a mouse model of amyotrophic lateral sclerosis. J Clin Invest. 2010;120(10):3673–9.  https://doi.org/10.1172/JCI4298642986. [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Vaccaro A, Patten SA, Aggad D, Julien C, Maios C, Kabashi E, et al. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo. Neurobiol Dis. 2013;55:64–75.  https://doi.org/10.1016/j.nbd.2013.03.015. S0969-9961(13)00103-4 [pii].CrossRefPubMedGoogle Scholar
  118. 118.
    Wang L, Popko B, Tixier E, Roos RP. Guanabenz, which enhances the unfolded protein response, ameliorates mutant SOD1-induced amyotrophic lateral sclerosis. Neurobiol Dis. 2014;71:317–24.  https://doi.org/10.1016/j.nbd.2014.08.010. S0969-9961(14)00241-1 [pii].CrossRefPubMedGoogle Scholar
  119. 119.
    Jiang HQ, Ren M, Jiang HZ, Wang J, Zhang J, Yin X, et al. Guanabenz delays the onset of disease symptoms, extends lifespan, improves motor performance and attenuates motor neuron loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis. Neuroscience. 2014;277:132–8.  https://doi.org/10.1016/j.neuroscience.2014.03.047. S0306-4522(14)00267-X [pii].CrossRefGoogle Scholar
  120. 120.
    Zhu S, Stavrovskaya IG, Drozda M, Kim BY, Ona V, Li M, et al. Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature. 2002;417(6884):74–8.  https://doi.org/10.1038/417074a. 417074a [pii].CrossRefPubMedGoogle Scholar
  121. 121.
    Kriz J, Nguyen MD, Julien JP. Minocycline slows disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol Dis. 2002;10(3):268–78. S0969996102904870 [pii].CrossRefPubMedGoogle Scholar
  122. 122.
    Wang X. The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther. 2009;15(4):345–57.  https://doi.org/10.1111/j.1755-5949.2009.00105.x. CNS105 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Weishaupt JH, Bartels C, Polking E, Dietrich J, Rohde G, Poeggeler B, et al. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J Pineal Res. 2006;41(4):313–23.  https://doi.org/10.1111/j.1600-079X.2006.00377.x. JPI377 [pii].CrossRefPubMedGoogle Scholar
  124. 124.
    Kanai H, Sawa A, Chen RW, Leeds P, Chuang DM. Valproic acid inhibits histone deacetylase activity and suppresses excitotoxicity-induced GAPDH nuclear accumulation and apoptotic death in neurons. Pharmacogenomics J. 2004;4(5):336–44.  https://doi.org/10.1038/sj.tpj.6500269. 6500269 [pii].CrossRefPubMedGoogle Scholar
  125. 125.
    Rouaux C, Panteleeva I, Rene F, Gonzalez de Aguilar JL, Echaniz-Laguna A, Dupuis L, et al. Sodium valproate exerts neuroprotective effects in vivo through CREB-binding protein-dependent mechanisms but does not improve survival in an amyotrophic lateral sclerosis mouse model. J Neurosci. 2007;27(21):5535–45.  https://doi.org/10.1523/JNEUROSCI.1139-07.2007. 27/21/5535 [pii].CrossRefPubMedGoogle Scholar
  126. 126.
    Morland C, Boldingh KA, Iversen EG, Hassel B. Valproate is neuroprotective against malonate toxicity in rat striatum: an association with augmentation of high-affinity glutamate uptake. J Cereb Blood Flow Metab. 2004;24(11):1226–34.  https://doi.org/10.1097/01.WCB.0000138666.25305.A7. 00004647-200411000-00005 [pii].CrossRefPubMedGoogle Scholar
  127. 127.
    Thomsen GM, Gowing G, Svendsen S, Svendsen CN. The past, present and future of stem cell clinical trials for ALS. Exp Neurol. 2014;262(Pt B):127–37.  https://doi.org/10.1016/j.expneurol.2014.02.021. S0014-4886(14)00073-9 [pii].CrossRefPubMedGoogle Scholar
  128. 128.
    Pandya RS, Mao LL, Zhou EW, Bowser R, Zhu Z, Zhu Y, et al. Neuroprotection for amyotrophic lateral sclerosis: role of stem cells, growth factors, and gene therapy. Cent Nerv Syst Agents Med Chem. 2012;12(1):15–27. CNSAMC-EPUP-20120127-001 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Lunn JS, Sakowski SA, Feldman EL. Concise review: stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells. 2014;32(5):1099–109.  https://doi.org/10.1002/stem.1628.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Borlongan CV. Recent preclinical evidence advancing cell therapy for Alzheimer’s disease. Exp Neurol. 2012;237(1):142–6.  https://doi.org/10.1016/j.expneurol.2012.06.024. S0014-4886(12)00266-X [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Corti S, Locatelli F, Papadimitriou D, Del Bo R, Nizzardo M, Nardini M, et al. Neural stem cells LewisX+ CXCR4+ modify disease progression in an amyotrophic lateral sclerosis model. Brain. 2007;130(Pt 5):1289–305.  https://doi.org/10.1093/brain/awm043. awm043 [pii].CrossRefGoogle Scholar
  132. 132.
    Nizzardo M, Simone C, Rizzo F, Ruggieri M, Salani S, Riboldi G, et al. Minimally invasive transplantation of iPSC-derived ALDHhiSSCloVLA4+ neural stem cells effectively improves the phenotype of an amyotrophic lateral sclerosis model. Hum Mol Genet. 2014;23(2):342–54.  https://doi.org/10.1093/hmg/ddt425. ddt425 [pii].CrossRefGoogle Scholar
  133. 133.
    Mitrecic D, Nicaise C, Gajovic S, Pochet R. Distribution, differentiation, and survival of intravenously administered neural stem cells in a rat model of amyotrophic lateral sclerosis. Cell Transplant. 2010;19(5):537–48.  https://doi.org/10.3727/096368910X498269. ct2285mitrecic [pii].CrossRefGoogle Scholar
  134. 134.
    Teng YD, Benn SC, Kalkanis SN, Shefner JM, Onario RC, Cheng B, et al. Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis. Sci Transl Med. 2012;4(165):165ra4.  https://doi.org/10.1126/scitranslmed.3004579. 4/165/165ra164 [pii].CrossRefGoogle Scholar
  135. 135.
    Martinez HR, Gonzalez-Garza MT, Moreno-Cuevas JE, Caro E, Gutierrez-Jimenez E, Segura JJ. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy. 2009;11(1):26–34.  https://doi.org/10.1080/14653240802644651. 908441620 [pii].CrossRefGoogle Scholar
  136. 136.
    Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol. 2010;67(10):1187–94.  https://doi.org/10.1001/archneurol.2010.248. 67/10/1187 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Mazzini L, Ferrero I, Luparello V, Rustichelli D, Gunetti M, Mareschi K, et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp Neurol. 2010;223(1):229–37.  https://doi.org/10.1016/j.expneurol.2009.08.007. S0014-4886(09)00317-3 [pii].CrossRefGoogle Scholar
  138. 138.
    Cattaneo E, McKay R. Identifying and manipulating neuronal stem cells. Trends Neurosci. 1991;14(8):338–40. 0166-2236(91)90158-Q [pii].CrossRefGoogle Scholar
  139. 139.
    Svendsen CN, Caldwell MA, Shen J, ter Borg MG, Rosser AE, Tyers P, et al. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson’s disease. Exp Neurol. 1997;148(1):135–46.  https://doi.org/10.1006/exnr.1997.6634. S0014-4886(97)96634-6 [pii].CrossRefGoogle Scholar
  140. 140.
    Wright LS, Prowse KR, Wallace K, Linskens MH, Svendsen CN. Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res. 2006;312(11):2107–20.  https://doi.org/10.1016/j.yexcr.2006.03.012. S0014-4827(06)00096-6 [pii].CrossRefGoogle Scholar
  141. 141.
    Glass JD, Boulis NM, Johe K, Rutkove SB, Federici T, Polak M, et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: results of a phase I trial in 12 patients. Stem Cells. 2012;30(6):1144–51.  https://doi.org/10.1002/stem.1079.CrossRefGoogle Scholar
  142. 142.
    Riley J, Federici T, Polak M, Kelly C, Glass J, Raore B, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery. 2012;71(2):405–16; discussion 16.  https://doi.org/10.1227/NEU.0b013e31825ca05f.CrossRefGoogle Scholar
  143. 143.
    Riley J, Glass J, Feldman EL, Polak M, Bordeau J, Federici T, et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: a phase I trial, cervical microinjection, and final surgical safety outcomes. Neurosurgery. 2014;74(1):77–87.  https://doi.org/10.1227/NEU.0000000000000156.CrossRefGoogle Scholar
  144. 144.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006, 126(4):663–76.  https://doi.org/10.1016/j.Cell2006.07.024. S0092-8674(06)00976-7 [pii].
  145. 145.
    Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007;2(12):3081–9.  https://doi.org/10.1038/nprot.2007.418. nprot.2007.418 [pii].CrossRefGoogle Scholar
  146. 146.
    Papadeas ST, Maragakis NJ. Advances in stem cell research for amyotrophic lateral sclerosis. Curr Opin Biotechnol. 2009;20(5):545–51.  https://doi.org/10.1016/j.copbio.2009.09.003. S0958-1669(09)00105-0 [pii].CrossRefGoogle Scholar
  147. 147.
    Mattis VB, Svendsen CN. Induced pluripotent stem cells: a new revolution for clinical neurology? Lancet Neurol. 2011;10(4):383–94.  https://doi.org/10.1016/S1474-4422(11)70022-9. S1474-4422(11)70022-9 [pii].CrossRefGoogle Scholar
  148. 148.
    Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science. 2008;321(5893):1218–21.  https://doi.org/10.1126/science.1158799. 1158799 [pii].CrossRefGoogle Scholar
  149. 149.
    Mitne-Neto M, Machado-Costa M, Marchetto MC, Bengtson MH, Joazeiro CA, Tsuda H, et al. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet. 2011;20(18):3642–52.  https://doi.org/10.1093/hmg/ddr284. ddr284 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Federici T, Boulis NM. Gene-based treatment of motor neuron diseases. Muscle Nerve. 2006;33(3):302–23.  https://doi.org/10.1002/mus.20439.CrossRefGoogle Scholar
  151. 151.
    Scarrott JM, Herranz-Martin S, Alrafiah AR, Shaw PJ, Azzouz M. Current developments in gene therapy for amyotrophic lateral sclerosis. Expert Opin Biol Ther. 2015;15(7):935–47.  https://doi.org/10.1517/14712598.2015.1044894.CrossRefGoogle Scholar
  152. 152.
    Mello CC, Conte D Jr. Revealing the world of RNA interference. Nature. 2004;431(7006):338–42.  https://doi.org/10.1038/nature02872. nature02872 [pii].CrossRefGoogle Scholar
  153. 153.
    Yokota T. [Gene therapy of ALS with RNA interference]. Rinsho Shinkeigaku. 2009;49(11):821–3.CrossRefGoogle Scholar
  154. 154.
    Rizvanov AA, Mukhamedyarov MA, Palotas A, Islamov RR. Retrogradely transported siRNA silences human mutant SOD1 in spinal cord motor neurons. Exp Brain Res. 2009;195(1):1–4.  https://doi.org/10.1007/s00221-009-1742-4.CrossRefGoogle Scholar
  155. 155.
    Maxwell MM, Pasinelli P, Kazantsev AG, Brown RH Jr. RNA interference-mediated silencing of mutant superoxide dismutase rescues cyclosporin A-induced death in cultured neuroblastoma cells. Proc Natl Acad Sci U S A. 2004;101(9):3178–83.  https://doi.org/10.1073/pnas.0308726100. 0308726100 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Ralph GS, Radcliffe PA, Day DM, Carthy JM, Leroux MA, Lee DC, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med. 2005;11(4):429–33.  https://doi.org/10.1038/nm1205. nm1205 [pii].CrossRefGoogle Scholar
  157. 157.
    Xia X, Zhou H, Huang Y, Xu Z. Allele-specific RNAi selectively silences mutant SOD1 and achieves significant therapeutic benefit in vivo. Neurobiol Dis. 2006;23(3):578–86.  https://doi.org/10.1016/j.nbd.2006.04.019. S0969-9961(06)00102-1 [pii].CrossRefGoogle Scholar
  158. 158.
    Prakash S, Malhotra M, Rengaswamy V. Nonviral siRNA delivery for gene silencing in neurodegenerative diseases. Methods Mol Biol. 2010;623:211–29.  https://doi.org/10.1007/978-1-60761-588-0_14.CrossRefGoogle Scholar
  159. 159.
    Kumar V, Kashav T, Islam A, Ahmad F, Hassan MI. Structural insight into C9orf72 hexanucleotide repeat expansions: towards new therapeutic targets in FTD-ALS. Neurochem Int. 2016;100:11–20.  https://doi.org/10.1016/j.neuint.2016.08.008. S0197-0186(16)30155-3 [pii].CrossRefGoogle Scholar
  160. 160.
    Smith RA, Miller TM, Yamanaka K, Monia BP, Condon TP, Hung G, et al. Antisense oligonucleotide therapy for neurodegenerative disease. J Clin Invest. 2006;116(8):2290–6.  https://doi.org/10.1172/JCI25424.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Miller TM, Pestronk A, David W, Rothstein J, Simpson E, Appel SH, et al. An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 2013;12(5):435–42.  https://doi.org/10.1016/S1474-4422(13)70061-9. S1474-4422(13)70061-9 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Donnelly CJ, Zhang PW, Pham JT, Haeusler AR, Mistry NA, Vidensky S, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80(2):415–28.  https://doi.org/10.1016/j.neuron.2013.10.015. S0896-6273(13)00918-5 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  163. 163.
    Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci U S A. 2013;110(47):E4530–9.  https://doi.org/10.1073/pnas.1318835110. 1318835110 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5(208):208ra149.  https://doi.org/10.1126/scitranslmed.3007529. 5/208/208ra149 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proc Natl Acad Sci U S A. 2013;110(51):E4968–77.  https://doi.org/10.1073/pnas.1315438110. 1315438110 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Rowland LP, Shneider NA. Amyotrophic lateral sclerosis. N Engl J Med. 2001;344(22):1688–700.  https://doi.org/10.1056/NEJM200105313442207.CrossRefGoogle Scholar
  167. 167.
    Grundstrom E, Lindholm D, Johansson A, Blennow K, Askmark H. GDNF but not BDNF is increased in cerebrospinal fluid in amyotrophic lateral sclerosis. Neuroreport. 2000;11(8):1781–3.CrossRefGoogle Scholar
  168. 168.
    Manabe Y, Nagano I, Gazi MS, Murakami T, Shiote M, Shoji M, et al. Glial cell line-derived neurotrophic factor protein prevents motor neuron loss of transgenic model mice for amyotrophic lateral sclerosis. Neurol Res. 2003;25(2):195–200.  https://doi.org/10.1179/016164103101201193.CrossRefGoogle Scholar
  169. 169.
    Li W, Brakefield D, Pan Y, Hunter D, Myckatyn TM, Parsadanian A. Muscle-derived but not centrally derived transgene GDNF is neuroprotective in G93A-SOD1 mouse model of ALS. Exp Neurol. 2007;203(2):457–71.  https://doi.org/10.1016/j.expneurol.2006.08.028. S0014-4886(06)00530-9 [pii].CrossRefGoogle Scholar
  170. 170.
    Phillips HS, Hains JM, Laramee GR, Rosenthal A, Winslow JW. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons. Science. 1990;250(4978):290–4.CrossRefGoogle Scholar
  171. 171.
    Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW. Physical activity increases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 1996;726(1–2):49–56. 0006-8993(96)00273-9 [pii].CrossRefGoogle Scholar
  172. 172.
    Neeper SA, Gomez-Pinilla F, Choi J, Cotman C. Exercise and brain neurotrophins. Nature. 1995;373(6510):109.  https://doi.org/10.1038/373109a0.CrossRefGoogle Scholar
  173. 173.
    Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94(10):1062–9.  https://doi.org/10.1113/expphysiol.2009.048512. expphysiol.2009.048512 [pii].CrossRefGoogle Scholar
  174. 174.
    Wang YQ, Sun FY. [Neuroprotective mechanisms of vascular endothelial growth factor]. Sheng Li Ke Xue Jin Zhan. 2007;38(3):202–7.Google Scholar
  175. 175.
    Zheng C, Skold MK, Li J, Nennesmo I, Fadeel B, Henter JI. VEGF reduces astrogliosis and preserves neuromuscular junctions in ALS transgenic mice. Biochem Biophys Res Commun. 2007;363(4):989–93.  https://doi.org/10.1016/j.bbrc.2007.09.088. S0006-291X(07)02072-4 [pii].CrossRefPubMedGoogle Scholar
  176. 176.
    Storkebaum E, Lambrechts D, Dewerchin M, Moreno-Murciano MP, Appelmans S, Oh H, et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci. 2005;8(1):85–92.  https://doi.org/10.1038/nn1360. nn1360 [pii].CrossRefPubMedGoogle Scholar
  177. 177.
    Li B, Xu W, Luo C, Gozal D, Liu R. VEGF-induced activation of the PI3-K/Akt pathway reduces mutant SOD1-mediated motor neuron cell death. Brain Res Mol Brain Res. 2003;111(1–2):155–64. S0169328X03000251 [pii].CrossRefPubMedGoogle Scholar
  178. 178.
    Dore S, Kar S, Quirion R. Rediscovering an old friend, IGF-I: potential use in the treatment of neurodegenerative diseases. Trends Neurosci. 1997;20(8):326–31. S0166223696010363 [pii].CrossRefPubMedGoogle Scholar
  179. 179.
    Kaspar BK, Frost LM, Christian L, Umapathi P, Gage FH. Synergy of insulin-like growth factor-1 and exercise in amyotrophic lateral sclerosis. Ann Neurol. 2005;57(5):649–55.  https://doi.org/10.1002/ana.20451.CrossRefPubMedGoogle Scholar
  180. 180.
    Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science. 2003;301(5634):839–42.  https://doi.org/10.1126/science.1086137. 301/5634/839 [pii].CrossRefPubMedGoogle Scholar
  181. 181.
    Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, et al. Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model. J Cell Biol. 2005;168(2):193–9.  https://doi.org/10.1083/jcb.200407021. jcb.200407021 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Kunst CB. Complex genetics of amyotrophic lateral sclerosis. Am J Hum Genet. 2004;75(6):933–47.  https://doi.org/10.1086/426001. S0002-9297(07)60063-9 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Carro E, Trejo JL, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci. 2001;21(15):5678–84. 21/15/5678 [pii].CrossRefPubMedGoogle Scholar
  184. 184.
    Carro E, Nunez A, Busiguina S, Torres-Aleman I. Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci. 2000;20(8):2926–33.CrossRefPubMedGoogle Scholar
  185. 185.
    Dodge JC, Haidet AM, Yang W, Passini MA, Hester M, Clarke J, et al. Delivery of AAV-IGF-1 to the CNS extends survival in ALS mice through modification of aberrant glial cell activity. Mol Ther. 2008;16(6):1056–64.  https://doi.org/10.1038/mt.2008.60. mt200860 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Dodge JC, Treleaven CM, Fidler JA, Hester M, Haidet A, Handy C, et al. AAV4-mediated expression of IGF-1 and VEGF within cellular components of the ventricular system improves survival outcome in familial ALS mice. Mol Ther. 2010;18(12):2075–84.  https://doi.org/10.1038/mt.2010.206. mt2010206 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Moving toward precision medicine. Lancet. 2011;378(9804):1678.  https://doi.org/10.1016/S0140-6736(11)61725-X. S0140-6736(11)61725-X [pii].Google Scholar
  188. 188.
    Ashley EA. The precision medicine initiative: a new national effort. JAMA. 2015;313(21):2119–20.  https://doi.org/10.1001/jama.2015.3595. 2289153 [pii].CrossRefPubMedGoogle Scholar
  189. 189.
    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372(9):793–5.  https://doi.org/10.1056/NEJMp1500523.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Collisson EA, Cho RJ, Gray JW. What are we learning from the cancer genome? Nat Rev Clin Oncol. 2012;9(11):621–30.  https://doi.org/10.1038/nrclinonc.2012.159. nrclinonc.2012.159 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Montine TJ, Montine KS. Precision medicine: clarity for the clinical and biological complexity of Alzheimer’s and Parkinson’s diseases. J Exp Med. 2015;212(5):601–5.  https://doi.org/10.1084/jem.20150656. jem.20150656 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Zou ZY, Liu CY, Che CH, Huang HP. Toward precision medicine in amyotrophic lateral sclerosis. Ann Transl Med. 2016;4(2):27.  https://doi.org/10.3978/j.issn.2305-5839.2016.01.16. atm-04-02-27 [pii].CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Tan L, Jiang T, Yu JT. Toward precision medicine in neurological diseases. Ann Transl Med. 2016;4(6):104.  https://doi.org/10.21037/atm.2016.03.26. atm-04-06-104 [pii].CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia IslamiaNew DelhiIndia
  2. 2.Centre for Biological Sciences, Central University of South BiharPatnaIndia

Personalised recommendations