Skip to main content

Treatment Paradigms in Huntington’s Disease

  • Chapter
  • First Online:

Abstract

Huntington’s is a rare hereditary neurodegenerative disease. There are currently no drugs that cure this disease, rather drugs that are now used were developed for other central nervous system disorders. In this chapter, we will briefly review (a) disease process (b) drugs that are currently used and (c) profile drugs that are currently active in clinical trials. While we have summarized the existing drug treatment paradigm, we believe that drug candidates currently in clinical development may represent future treatment paradigm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98.

    Article  CAS  Google Scholar 

  2. Krobitsch S, Kazantsev AG. Huntington’s disease: from molecular basis to therapeutic advances. Int J Biochem Cell Biol. 2011;43:20–4.

    Article  CAS  Google Scholar 

  3. Gelderblom H, Wüstenberg T, McLean T, Mütze L, Fischer W, Saft C, Hoffmann R, Süssmuth S, Schlattmann P, van Duijn E, Landwehrmeyer B, Priller J. Bupropion for the treatment of apathy in Huntington’s disease: a multicenter, randomised, double-blind, placebo-controlled, prospective crossover trial. PLoS One. 2017;12:e0173872.

    Article  Google Scholar 

  4. Wyant KJ, Ridder AJ, Dayalu P. Huntington’s disease-update on treatments. Curr Neurol Neurosci Rep. 2017;17:33.

    Article  Google Scholar 

  5. Unified Huntington’s Disease Rating Scale (UHDRS). Huntington Study Group. http://huntingtonstudygroup.org/tools-resources/uhdrs/. Accessed 10 Jan 2017.

  6. DiFiglia M, Sapp E, Chase KO, Davies SW, Bates GP, Vonsattel JP, Aronin N. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science. 1997;277:1990–3.

    Article  CAS  Google Scholar 

  7. Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev. 2010;90:905–81.

    Article  CAS  Google Scholar 

  8. Chen M, Ona VO, Li M, Ferrante RJ, Fink KB, Zhu S, Bian J, Guo L, Farrell LA, Hersch SM, Hobbs W, Vonsattel JP, Cha JH, Friedlander RM. Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med. 2000;6:797–801.

    Article  CAS  Google Scholar 

  9. Kim M, Lee HS, LaForet G, McIntyre C, Martin EJ, Chang P, Kim TW, Williams M, Reddy PH, Tagle D, Boyce FM, Won L, Heller A, Aronin N, DiFiglia M. Mutant huntingtin expression in clonal striatal cells: dissociation of inclusion formation and neuronal survival by caspase inhibition. J Neurosci. 1999;19:964–73.

    Article  CAS  Google Scholar 

  10. Koroshetz WJ, Jenkins BG, Rosen BR, Beal MF. Energy metabolism defects in Huntington’s disease and effects of coenzyme Q10. Ann Neurol. 1997;41:160–5.

    Article  CAS  Google Scholar 

  11. Ona VO, Li M, Vonsattel JP, Andrews LJ, Khan SQ, Chung WM, Frey AS, Menon AS, Li XJ, Stieg PE, Yuan J, Penney JB, Young AB, Cha JH, Friedlander RM. Inhibition of caspase-1 slows disease progression in a mouse model of Huntington’s disease. Nature. 1999;399:263–7.

    Article  CAS  Google Scholar 

  12. Wang X, Zhu S, Drozda M, Zhang W, Stavrovskaya IG, Cattaneo E, Ferrante RJ, Kristal BS, Friedlander RM. Minocycline inhibits caspase-independent and-dependent mitochondrial cell death pathways in models of Huntington’s disease. Proc Natl Acad Sci U S A. 2003;100:10483–7.

    Article  CAS  Google Scholar 

  13. Frank S. Treatment of Huntington’s disease. Neurotherapeutics. 2014;11:153–60.

    Article  CAS  Google Scholar 

  14. Drugs.com. Home, News, New Drug Applications, Teva Announces FDA Acceptance of Resubmitted NDA for SD-809 for Treatment of Chorea Associated with Huntington Disease. 2016. http://www.drugs.com/nda/sd_809_161020.html. Accessed 10 Jan 2017.

  15. Stamler DA, Brown F, Bradbury M. The pharmacokinetics of extended release SD-809, a deuterium-substituted analogue of tetrabenazine. Mov Disord. 2013;28(Suppl 1):765.

    Google Scholar 

  16. Guay DR. Tetrabenazine, a monoamine-depleting drug used in the treatment of hyperkinetic movement disorders. Am J Geriatr Pharmacother. 2010;8:331–73.

    Article  CAS  Google Scholar 

  17. Nilsson M, Carlsson A, Markinhuhta KR, Sonesson C, Pettersson F, Gullme M, Carlsson ML. The dopaminergic stabiliser ACR16 counteracts the behavioural primitivization induced by the NMDA receptor antagonist MK-801 in mice: implications for cognition. Prog Neuro-Psychopharmacol Biol Psychiatry. 2004;28:677–85.

    Article  CAS  Google Scholar 

  18. Pettersson F, Pontén H, Waters N, Waters S, Sonesson C. Synthesis and evaluation of a set of 4-phenylpiperidines and 4-phenylpiperazines as D2 receptor ligands and the discovery of the dopaminergic stabilizer4-[3-(methylsulfonyl)phenyl]-1-propylpiperidine (huntexil, pridopidine, ACR16). J Med Chem. 2010;53:2510–20.

    Article  CAS  Google Scholar 

  19. Ponten H, Kullingsjö J, Lagerkvist S, Martin P, Pettersson F, Sonesson C, Waters S, Waters N. In vivo pharmacology of the dopaminergic stabilizer pridopidine. Eur J Pharmacol. 2010;644:88–95.

    Article  CAS  Google Scholar 

  20. Ponten H, Kullingsjö J, Sonesson C, Waters S, Waters N, Tedroff J. The dopaminergic stabilizer pridopidine decreases expression of L-DOPA-induced locomotor sensitisation in the rat unilateral 6-OHDA model. Eur J Pharmacol. 2013;698:278–85.

    Article  CAS  Google Scholar 

  21. Ryskamp D, Wu J, Geva M, Kusko R, Grossman I, Hayden M, Bezprozvanny I. The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol Dis. 2017;97:46–59.

    Article  CAS  Google Scholar 

  22. Huntington Study Group HART Investigators. A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov Disord. 2013;28:1407–15.

    Article  Google Scholar 

  23. Teva Pharmaceutical Industries Ltd. Home page, Media, Latest News. Teva Announces Results from Exploratory 52-Week Phase 2 PRIDE-HD Study of Pridopidine in Huntington Disease. JERUSALEM(BUSINESS WIRE). 2016. http://www.tevapharm.com/news/teva_announces_results_from_exploratory_52_week_phase_2_pride_hd_study_of_pridopidine_in_huntington_disease_09_16.aspx. Accessed 10 Jan 2017.

  24. Ferrante RJ, Kubilus JK, Lee J, Ryu H, Beesen A, Zucker B, Smith K, Kowall NW, Ratan RR, Luthi-Carter R, Hersch SM. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci. 2003;23:9418–27.

    Article  CAS  Google Scholar 

  25. Gertz M, Fischer F, Nguyen GT, Lakshminarasimhan M, Schutkowski M, Weyand M, Steegborn C. Ex-527 inhibits Sirtuins by exploiting their unique NAD+−dependent deacetylation mechanism. Proc Natl Acad Sci U S A. 2013;110:E2772–81. https://doi.org/10.1073/pnas.1303628110.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Smith MR, Syed A, Lukacsovich T, Purcell J, Barbaro BA, Worthge SA, Wei SR, Pollio G, Magnoni L, Scali C, Massai L, Franceschini D, Camarri M, Gianfriddo M, Diodato E, Thomas R, Gokce O, Tabrizi SJ, Caricasole A, Landwehrmeyer B, Menalled L, Murphy C, Ramboz S, Luthi-Carter R, Westerberg G, Marsh JL. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet. 2014;23:2995–3007.

    Article  CAS  Google Scholar 

  27. Reilmann R, Squitieri F, Priller J, Saft C, Mariotti C, Suessmuth S, Nemeth A, Tabrizi S, Quarrell O, Craufurd D, Rickards H, Rosser A, Borje D, Michaela T, Angieszka S, Fischer D, Macdonald D, Munoz-Sanjuan I, Pacifici R, Frost C, Farmer R, Landwehrmeyer B, Westerberg G. Safety and tolerability of selisistat for the treatment of Huntington’s disease: results from a randomized, double-blind, placebo-controlled phase II trial (S47.004). Neurology. 2014;82(Suppl 10):S47.004.

    Google Scholar 

  28. Kulkarni P, Saxena U. Investigational drugs for the management of Huntington’s disease: are we there yet? Expert Opin Investig Drugs. 2014;23:1595–603.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Uday Saxena would like to dedicate this chapter to the memories of Dr. Eshwar Raj Saxena and Dr. K. Anji Reddy, his inspiration for being a scientist and an entrepreneur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uday Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kulkarni, P., Saxena, U. (2019). Treatment Paradigms in Huntington’s Disease. In: Singh, S., Joshi, N. (eds) Pathology, Prevention and Therapeutics of Neurodegenerative Disease. Springer, Singapore. https://doi.org/10.1007/978-981-13-0944-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-0944-1_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-0943-4

  • Online ISBN: 978-981-13-0944-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics