Advertisement

Multifarious Therapeutic Avenues for Alzheimer’s Disease

  • Magisetty Obulays
Chapter

Abstract

Alzheimer’s Disease (AD) being the most prevalent neurodegenerative disorder accounts for more than 80% of dementia cases. Although numerous animal models have been employed to study AD pathology and therapeutic avenues yet the understanding of the disease and therapy is limited. This chapter focuses on multifarious theranostic avenues for AD which include Magnetic Resonance Imaging (MRI), bioactive compounds, nanoparticles, drug delivery systems (DDS), and viral vector therapeutics. In addition, it also discusses pros and cons of blood brain barrier (BBB) and astrocytes in AD therapeutics.

Keywords

Alzheimer’s disease Bioactive compounds Blood brain barrier Nanotechnology 

References

  1. 1.
    Obulesu M, Jhansilakshmi M. Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res. 2014;39:2301–12.CrossRefGoogle Scholar
  2. 2.
    Obulesu M, Jhansilakshmi M. Neuroprotective role of nanoparticles against Alzheimer’s disease. Curr Drug Metab. 2016;17:142–9.CrossRefGoogle Scholar
  3. 3.
    Grothe M, Heinsen H, Teipel SJ. Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol Psychiatry. 2012;71:805–13.CrossRefGoogle Scholar
  4. 4.
    Choudhury SR, Hudry E, Maguire CA, Sena-Esteves M, Breakefield XO, Grandi P. Viral vectors for therapy of neurologic diseases. Neuropharmacology. 2017;120:63–80.CrossRefGoogle Scholar
  5. 5.
    Hilt S, Tang T, Walton JH, Budamagunta M, Maezawa I, Kalai T, Hideg K, Singh V, Wulff H, Gong Q, Jin LW, Louie A, Voss JC. A metal-free method for producing MRI contrast at amyloid-β. J Alzheimers Dis. 2017;55(4):1667–81.CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Obulesu M, Venu R, Somashekhar R. Tau mediated neurodegeneration: an insight into Alzheimer’s disease pathology. Neurochem Res. 2011;36:1329–35.CrossRefGoogle Scholar
  7. 7.
    Holtzman DM, Carrillo MC, Hendrix JA, Bain LJ, Catafau AM, Gault LM, Goedert M, Mandelkow E, Mandelkow EM, Miller DS, Ostrowitzki S, Polydoro M, Smith S, Wittmann M, Hutton M. Tau: from research to clinical development. Alzheimers Dement. 2016;12:1033–9.CrossRefGoogle Scholar
  8. 8.
    Dodart JC, Mathis C, Bales KR, Paul SM. Does my mouse have Alzheimer’s disease? Genes Brain Behav. 2002;1:142–55.CrossRefGoogle Scholar
  9. 9.
    Duyckaerts C, Potier MC, Delatour B. Alzheimer disease models and human neuropathology: similarities and differences. Acta Neuropathol. 2008;115:5–38.CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sabbagh JJ, Kinney JW, Cummings JL. Animal systems in the development of treatments for Alzheimer’s disease: challenges, methods, and implications. Neurobiol Aging. 2013;34:169–83.CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Langley GR. Considering a new paradigm for Alzheimer’s disease research. Drug Discov Today. 2014;19:1114–24.CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Cavanaugh SE, Pippin JJ, Barnard ND. Animal models of Alzheimer disease: historical pitfalls and a path forward. ALTEX. 2014;31:279–302.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Manich G, del Valle J, Cabezon I, Camins A, Pallas M, Pelegri C, Vilaplana J. Presence of a neo-epitope and absence of amyloid beta and tau protein in degenerative hippocampal granules of aged mice. Age. 2014;36:151–65.CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Porquet D, Andres-Benito P, Grinan-Ferre C, Camins A, Ferrer I, Canudas AM, Del Valle J, Pallas M. Amyloid and tau pathology of familial Alzheimer’s disease APP/PS1 mouse model in a senescence phenotype background (SAMP8). Age. 2015;37:9747.CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Pistollato F, Cavanaugh SE, Chandrasekera PC. A human-based integrated framework for Alzheimer’s disease research. J Alzheimers Dis. 2015;47:857–68.CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Pistollato F, Ohayon EL, Lam A, Langley GR, Novak TJ, Pamies D, Perry G, Trushina E, Williams RS, Roher AE, Hartung T, Harnad S, Barnard N, Morris MC, Lai MC, Merkley R, Chandrasekera PC. Alzheimer disease research in the 21st century: past and current failures, new perspectives and funding priorities. Oncotarget. 2016;7:38999–9016.CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ, Crea R, Cuzzocrea S, Calabrese V. Inflammasomes, hormesis, and antioxidants in neuroinflammation: role of NRLP3 in Alzheimer disease. J Neurosci Res. 2017;95(7):1360–72.CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhang M, Xv GH, Wang WX, Meng DJ, Ji Y. Electroacupuncture improves cognitive deficits and activates PPAR-γ in a rat model of Alzheimer’s disease. Acupunct Med. 2017;35(1):44–51.CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Webster SP, McBride A, Binnie M, Sooy K, Seckl JR, Andrew R, Pallin TD, Hunt HJ, Perrior TR, Ruffles VS, Ketelbey JW, Boyd A, Walker BR. Selection and early clinical evaluation of the brain-penetrant 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitor UE2343 (Xanamem™). Br J Pharmacol. 2017;174(5):396–408.CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Portelius E, Zetterberg H, Skillback T, Tornqvist U, Andreasson U, Trojanowski JQ, Weiner MW, Shaw LM, Mattsson N, Blennow K, Alzheimer’s Disease Neuroimaging Initiative. Cerebrospinal fluid neurogranin: relation to cognition and neurodegeneration in Alzheimer’s disease. Brain. 2015;138:3373–85.CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Magisetty O, Magisetty J, Magisetty D, Magisetty L. Biomarkers of Alzheimer’s disease: an overview of the recent inventions. Recent Pat Biomark. 2013;3:183–7.CrossRefGoogle Scholar
  22. 22.
    Erdo F, Denes L, de Lange E. Age-associated physiological and pathological changes at the blood-brain barrier: a review. J Cereb Blood Flow Metab. 2017;37(1):4–24.CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Miyakawa T. Vascular pathology in Alzheimer’s disease. Psychogeriatrics. 2010;10:39–44.CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–38.CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Baloyannis SJ. Brain capillaries in Alzheimer’s disease. Hell J Nucl Med. 2015;18:152.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Li T, Vandesquille M, Koukouli F, Dudeffant C, Youssef I, Lenormand P, Ganneau C, Maskos U, Czech C, Grueninger F, Duyckaerts C, Dhenain M, Bay S, Delatour B, Lafaye P. Camelid single-domain antibodies: a versatile tool for in vivo imaging of extracellular and intracellular brain targets. J Control Release. 2016;243:1–10.CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Figley CR, Stroman PW. The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals. Eur J Neurosci. 2011;33:577–88.CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Guillamon-Vivancos T, Gomez-Pinedo U, Matías-Guiu J. Astrocytes in neurodegenerative diseases (I): function and molecular description. Neurologia. 2015;30:119–29.CrossRefPubMedCentralGoogle Scholar
  29. 29.
    Singh S, Joshi N. Astrocytes: inexplicable cells in neurodegeneration. Int J Neurosci. 2017;127(3):204–9.CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Maragakis NJ, Rothstein JD. Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol. 2006;2:679–89.CrossRefGoogle Scholar
  31. 31.
    Musardo S, Saraceno C, Pelucchi S, Marcello E. Trafficking in neurons: searching for new targets for Alzheimer’s disease future therapies. Eur J Pharmacol. 2013;719:84–106.CrossRefGoogle Scholar
  32. 32.
    Han F, Wang W, Chen C. Research progress in animal models and stem cell therapy for Alzheimer’s disease. J Neuro-Oncol. 2015;3:11–2.Google Scholar
  33. 33.
    Hadavi D, Poot AA. Biomaterials for the treatment of Alzheimer’s disease. Front Bioeng Biotechnol. 2016;4:49.CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Maelicke A, Samochocki M, Jostock R, Fehrenbacher A, Ludwig J, Albuquerque EX, Zerlin M. Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer’s disease. Biol Psychiatry. 2001;49:279–88.CrossRefGoogle Scholar
  35. 35.
    Wang D, Noda Y, Zhou Y, Mouri A, Mizoguchi H, Nitta A, Chen W, Nabeshima T. The allosteric potentiation of nicotinic acetylcholine receptors by galantamine ameliorates the cognitive dysfunction in beta amyloid25-35 ICV-injected mice: involvement of dopaminergic systems. Neuropsychopharmacology. 2007;32:1261–71.CrossRefGoogle Scholar
  36. 36.
    Castillo WO, Aristizabal-Pachon AF, de Lima Montaldi AP, Sakamoto-Hojo ET, Takahashi CS. Galanthamine decreases genotoxicity and cell death induced by β-amyloid peptide in SH-SY5Y cell line. Neurotoxicology. 2016;57:291–7.CrossRefGoogle Scholar
  37. 37.
    Matharu B, Gibson G, Parsons R, Huckerby TN, Moore SA, Cooper LJ, Millichamp R, Allsop D, Austen B. Galantamine inhibits β-amyloid aggregation and cytotoxicity. J Neurol Sci. 2009;280:49–58.CrossRefGoogle Scholar
  38. 38.
    Li Q, Wu D, Zhang L, Zhang Y. Effects of galantamine on β-amyloid release and beta-site cleaving enzyme 1 expression in differentiated human neuroblastoma SH-SY5Y cells. Exp Gerontol. 2010;45:842–7.CrossRefGoogle Scholar
  39. 39.
    Leoutsakos JM, Muthen BO, Breitner JC, Lyketsos CG, ADAPT Research Team. Effects of non-steroidal anti-inflammatory drug treatments on cognitive decline vary by phase of pre-clinical Alzheimer disease: findings from the randomized controlled Alzheimer’s disease anti-inflammatory prevention trial. Int J Geriatr Psychiatry. 2012;27:364–74.PubMedGoogle Scholar
  40. 40.
    Cai H, Liang Q, Ge G. Gypenoside attenuates β amyloid-induced inflammation in N9 microglial cells via SOCS1 signaling. Neural Plast. 2016;2016:6362707.CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Landel V, Annweiler C, Millet P, Morello M, Feron F. Vitamin D, cognition and Alzheimer’s disease: the therapeutic benefit is in the D-tails. J Alzheimers Dis. 2016;53:419–44.CrossRefPubMedCentralGoogle Scholar
  42. 42.
    Stumpf WE, O’Brien LP. 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987;87:393–406.CrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wion D, MacGrogan D, Neveu I, Jehan F, Houlgatte R, Brachet P. 1,25-Dihydroxyvitamin D3 is a potent inducer of nerve growth factor synthesis. J Neurosci Res. 1991;28:110–4.CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ. Distribution of the vitamin D receptor and 1 alphahydroxylase in human brain. J Chem Neuroanat. 2005;29:21–30.CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Caraci F, Tascedda F, Merlo S, Benatti C, Spampinato SF, Munafo A, Leggio GM, Nicoletti F, Brunello N, Drago F, Sortino MA, Copani A. Fluoxetine prevents Aβ1-42-induced toxicity via a paracrine signaling mediated by transforming-growth-factor-β1. Front Pharmacol. 2016;7:389.CrossRefPubMedCentralGoogle Scholar
  46. 46.
    Fang QC. Some current study and research approaches relating to the use of plants in the traditional Chinese medicine. J Ethnopharmacol. 1980;2:57–63.CrossRefGoogle Scholar
  47. 47.
    Li L, Xue Z, Chen L, Chen X, Wang H, Wang X. Puerarin suppression of Aβ1-42-induced primary cortical neuron death is largely dependent on ERβ. Brain Res. 2017;1657:87–94.CrossRefPubMedCentralGoogle Scholar
  48. 48.
    Miksicek RJ. Estrogenic flavonoids: structural requirements for biological activity. Proc Soc Exp Biol Med. 1995;208:44–50.CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Kayano SI, Matsumura Y, Kitagawa Y, Kobayashi M, Nagayama A, Kawabata N, Kikuzaki H, Kitada Y. Isoflavone C-glycosides isolated from the root of kudzu (Pueraria lobata) and their estrogenic activities. Food Chem. 2012;134:282–7.CrossRefGoogle Scholar
  50. 50.
    Lauzon MA, Daviau A, Marcos B, Faucheux N. Nanoparticle-mediated growth factor delivery systems: a new way to treat Alzheimer’s disease. J Control Release. 2015;206:187–205.CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Wen MM, El-Salamouni NS, El-Refaie WM, Hazzah HA, Ali MM, Tosi G, Farid RM, Blanco-Prieto MJ, Billa N, Hanafy AS. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: technical, industrial, and clinical challenges. J Control Release. 2016;245:95–107.CrossRefPubMedCentralGoogle Scholar
  52. 52.
    Chonpathompikunlert P, Yoshitomi T, Han J, Isoda H, Nagasaki Y. The use of nitroxide radical-containing nanoparticles coupled with piperine to protect neuroblastoma SH-SY5Y cells from Aβ-induced oxidative stress. Biomaterials. 2011;32:8605–12.CrossRefPubMedCentralGoogle Scholar
  53. 53.
    Djiokeng Paka G, Doggui S, Zaghmi A, Safar R, Dao L, Reisch A, Klymchenko A, Roullin VG, Joubert O, Ramassamy C. Neuronal uptake and neuroprotective properties of curcumin-loaded nanoparticles on SK-N-SH cell line: role of poly(lactide-co-glycolide) polymeric matrix composition. Mol Pharm. 2016;13:391–403.CrossRefPubMedCentralGoogle Scholar
  54. 54.
    Meng F, Asghar S, Gao S, Su Z, Song J, Huo M, Meng W, Ping Q, Xiao Y. A novel LDL-mimic nanocarrier for the targeted delivery of curcumin into the brain to treat Alzheimer’s disease. Colloids Surf B Biointerfaces. 2015;134:88–97.CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Jia T, Sun Z, Lu Y, Gao J, Zou H, Xie F, Zhang G, Xu H, Sun D, Yu Y, Zhong Y. A dual brain-targeting curcumin-loaded polymersomes ameliorated cognitive dysfunction in intrahippocampal amyloid-β1-42-injected mice. Int J Nanomedicine. 2016;11:3765–75.CrossRefPubMedCentralGoogle Scholar
  56. 56.
    Obulesu M, Jhansilakshmi M. Liposomes in apoptosis induction and cancer therapy. In: Muganda P, editor. Apoptosis methods in toxicology. New York: Springer; 2016. p. 231–7.CrossRefGoogle Scholar
  57. 57.
    Mutlu NB, Degim Z, Yilmaz S, Eiz D, Nacar A. New perspective for the treatment of Alzheimer diseases: liposomal rivastigmine formulations. Drug Dev Ind Pharm. 2011;37:775–89.CrossRefPubMedCentralGoogle Scholar
  58. 58.
    Arumugam K, Subramanian GS, Mallayasamy SR, Averineni RK, Reddy MS, Udupa N. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharma. 2008;58:287–97.CrossRefGoogle Scholar
  59. 59.
    Li Y, Wang J, Zhang S, Liu Z. Neprilysin gene transfer: a promising therapeutic approach for Alzheimer’s disease. J Neurosci Res. 2015;93:1325–9.CrossRefPubMedCentralGoogle Scholar
  60. 60.
    Lebson L, Nash K, Kamath S, Herber D, Carty N, Lee DC, Li Q, Szekeres K, Jinwal U, Koren J, Dickey CA, Gottschall PE, Morgan D, Gordon MN. Trafficking CD11b-positive blood cells deliver therapeutic genes to the brain of amyloid-depositing transgenic mice. J Neurosci. 2010;30:9651–8.CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Levites Y, O’Nuallain B, Puligedda RD, Ondrejcak T, Adekar SP, Chen C, Cruz PE, Rosario AM, Macy S, Mably AJ, Walsh DM, Vidal R, Solomon A, Brown D, Rowan MJ, Golde TE, Dessain SK. A human monoclonal IgG that binds Aβ assemblies and diverse amyloids exhibits anti-amyloid activities in vitro and in vivo. J Neurosci. 2015;35:6265–76.CrossRefPubMedCentralGoogle Scholar
  62. 62.
    Nawrot B. Targeting BACE with small inhibitory nucleic acids—a future for Alzheimer’s disease therapy? Acta Biochim Pol. 2004;51:431–44.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Huang Y, Skwarek-Maruszewska A, Horre K, Vandewyer E, Wolfs L, Snellinx A, et al. Loss of GPR3 reduces the amyloid plaque burden and improves memory in Alzheimer’s disease mouse models. Sci Transl Med. 2015;7:309ra164.CrossRefPubMedCentralGoogle Scholar
  64. 64.
    Liao F, Hori Y, Hudry E, Bauer AQ, Jiang H, Mahan TE, et al. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. J Neurosci. 2014;34:7281–92.CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Murphy SR, Chang CC, Dogbevia G, Bryleva EY, Bowen Z, Hasan MT, et al. Acat1 knockdown gene therapy decreases amyloid-b in a mouse model of Alzheimer’s disease. Mol Ther. 2013;21:1497–506.CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kemppainen S, Lindholm P, Galli E, Lahtinen HM, Koivisto H, Hamalainen E, et al. Cerebral dopamine neurotrophic factor improves long-term memory in APP/PS1 transgenic mice modeling Alzheimer’s disease as well as in wild-type mice. Behav Brain Res. 2015;291:1–11.CrossRefPubMedCentralGoogle Scholar
  67. 67.
    Pascual-Lucas M, Viana da Silva S, Di Scala M, Garcia-Barroso C, Gonzalez-Aseguinolaza G, Mulle C, et al. Insulin-like growth factor 2 reverses memory and synaptic deficits in APP transgenic mice. EMBO Mol Med. 2014;6:1246–62.CrossRefPubMedCentralGoogle Scholar
  68. 68.
    Nagahara AH, Mateling M, Kovacs I, Wang L, Eggert S, Rockenstein E, et al. Early BDNF treatment ameliorates cell loss in the entorhinal cortex of APP transgenic mice. J Neurosci. 2013;33:15596–602.CrossRefPubMedCentralGoogle Scholar
  69. 69.
    Tuszynski MH, Yang JH, Barba D, U HS, Bakay RA, Pay MM, et al. Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol. 2015;72:1139–47.CrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Magisetty Obulays
    • 1
  1. 1.ATG LaboratoriesPuneIndia

Personalised recommendations