Comparison Analysis: Single and Multichannel EMD-Based Filtering with Application to BCI

  • P. GaurEmail author
  • G. Kaushik
  • Ram Bilas Pachori
  • H. Wang
  • G. Prasad
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 748)


A brain–computer interface (BCI) aims to facilitate a new communication path that translates the motion intentions of a human into control commands using brain signals such as magnetoencephalography (MEG) and electroencephalogram (EEG). In this work, a comparison of features obtained using single channel and multichannel empirical mode decomposition (EMD) based filtering is done to classify the multi-direction wrist movements-based MEG signals for enhancing a brain–computer interface (BCI). These MEG signals are presented as a dataset 3 as part of the BCI competition IV. These single channel and multichannel EMD methods decompose MEG signals into a group of intrinsic mode functions (IMFs). The mean frequency measure of these IMFs has been used to combine these IMFs to obtain enhanced MEG signals which have major contributions from the low-frequency band (<15 Hz). The shrinkage covariance matrix has been computed as a feature set. These features have been used for the classification of MEG signals into multi-direction wrist movements using the Riemannian geometry classification method. Significant improvement of >8% in the test stage using the multichannel EMD-based filtering and >4% when compared with single channel EMD method and BCI competition winner, respectively. This analysis offers evidence that the multichannel EMD-based filtering has the potential to be used in online BCI systems which facilitate a broad use of noninvasive BCIs.


Brain Computer Interface (BCI) Intrinsic Mode Functions (IMFs) Shrinkage Covariance Matrix (SHCM) Mean Frequency Measure Noninvasive BCIs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arvaneh, M., Guan, C., Ang, K.K., Quek, C.: Optimizing spatial filters by minimizing within-class dissimilarities in electroencephalogram-based brain-computer interface. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 610–619 (2013)CrossRefGoogle Scholar
  2. 2.
    Barachant, A., Bonnet, S., Congedo, M., Jutten, C.: Multiclass brain-computer interface classification by Riemannian geometry. IEEE Trans. Biomed. Eng. 59(4), 920–928 (2012)CrossRefGoogle Scholar
  3. 3.
    Blankertz, B., Dornhege, G., Krauledat, M., Müller, K.R., Curio, G.: The non-invasive Berlin brain-computer interface: fast acquisition of effective performance in untrained subjects. NeuroImage 37(2), 539–550 (2007)CrossRefGoogle Scholar
  4. 4.
    Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K.R.: Single-trial analysis and classification of ERP components - a tutorial. NeuroImage 56(2), 814–825 (2011)CrossRefGoogle Scholar
  5. 5.
    Gaur, P., Pachori, R.B., Wang, H., Prasad, G.: An empirical mode decomposition based filtering method for classification of motor-imagery EEG signals for enhancing brain-computer interface. In: International Joint Conference on Neural Networks, pp. 1–7 (2015)Google Scholar
  6. 6.
    Gaur, P., Prasad, G., Wang, H., Pachori, R.: An MEG based BCI for classification of multi-direction wrist movements using empirical mode decomposition. MEG UK 2016, York, UK (2016)Google Scholar
  7. 7.
    Gaur, P., Pachori, R.B., Wang, H., Prasad, G.: A multivariate empirical mode decomposition based filtering for subject independent BCI. In: 27th Irish Signals and Systems Conference (ISSC), pp. 1–7. IEEE (2016)Google Scholar
  8. 8.
    Gaur, P., Pachori, R.B., Wang, H., Prasad, G.: Enhanced Motor Imagery Classification in EEG-BCI using Multivariate EMD based Filtering and CSP Features. In: Proceedings of the Sixth International Brain-Computer Interface Meeting: BCI Past, Present, and Future (2016)Google Scholar
  9. 9.
    Gaur, P., Bornot, J., Prasad, G., Wang, H., Pachori, R.: Decoding of Multi-direction wrist movements using multivariate empirical mode decomposition. In: MEG UK 2017, University of Oxford, UK (2017)Google Scholar
  10. 10.
    Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond A: Math. Phys. Eng. Sci. 454, 903–995 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kaushik, G., Gaur, P., Prasad, G., Wang, H., Pachori, R.: An MEG based multi direction wrist movements analysis using empirical mode decomposition and multivariate empirical mode decomposition. In: MEG UK 2017. University of Oxford, UK (2017)Google Scholar
  12. 12.
    Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2011)CrossRefGoogle Scholar
  13. 13.
    Park, C., Looney, D., Ahrabian, A., Mandic, D.P., et al.: Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 21(1), 10–22 (2013)CrossRefGoogle Scholar
  14. 14.
    Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M.: EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr. Clin. Neurophysiol. 103(6), 642–651 (1997)CrossRefGoogle Scholar
  15. 15.
    Phinyomark, A., Thongpanja, S., Hu, H., Phukpattaranont, P., Limsakul, C.: The usefulness of mean and median frequencies in electromyography analysis. In: Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges, InTech, (2012)Google Scholar
  16. 16.
    Sardouie, S.H., Shamsollahi, M.B.: Selection of efficient features for discrimination of hand movements from MEG using a BCI competition IV data set. Front. Neurosci. 6 (2012)Google Scholar
  17. 17.
    Sharma, R., Pachori, R.B.: Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Syst. Appl. 42(3), 1106–1117 (2015)CrossRefGoogle Scholar
  18. 18.
    Sharma, R., Pachori, R.: Automated classification of focal and non-focal EEG signals based on bivariate empirical mode decomposition. Biomedical Signal and Image Processing in Patient Care, IGI Global (2017)Google Scholar
  19. 19.
    Tangermann, M., Müller, K.R., Aertsen, A., Birbaumer, N., Braun, C., Brunner, C., Leeb, R., Mehring, C., Miller, K.J., Müller-Putz, G.R., et al.: Review of the BCI competition IV. Front. Neurosci. 6 (2012)Google Scholar
  20. 20.
    ur Rehman, N., Park, C., Huang, N.E., Mandic, D.P.: EMD via MEMD: multivariate noise-aided computation of standard EMD. Adv. Adapt. Data Anal. 5(02), 1350007 (2013)Google Scholar
  21. 21.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)CrossRefGoogle Scholar
  22. 22.
    Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(01), 1–41 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • P. Gaur
    • 1
    Email author
  • G. Kaushik
    • 1
  • Ram Bilas Pachori
    • 2
  • H. Wang
    • 3
  • G. Prasad
    • 1
  1. 1.Intelligent Systems Research CentreUlster UniversityDerryUK
  2. 2.Discipline of Electrical EngineeringIndian Institute of Technology IndoreIndoreIndia
  3. 3.School of Computing and MathematicsUlster UniversityJordanstownUK

Personalised recommendations