Abstract
The purpose of this chapter is to provide comprehensive and useful guidelines for the methods of the functional connectivity analysis (FCA) for electroencephalogram (EEG) and its application. After presenting the detailed procedure for the FCA, we described various methods for quantifying functional connectivity. The problem of volume conduction and the means to diminish its confounding effects on the FCA was thoroughly reviewed. As a useful preprocessing for the FCA, spatial filtering of the time-series measured on the scalp or transformation to current densities on cortical surface were described. We also reviewed ongoing efforts toward developing FC measures which are inherently robust to the volume conduction problem. Finally, we illustrated the procedures for determining significance of the FC among specific pair of regions, which exploit surrogate data generation or the characteristics of event-related data.
This is a preview of subscription content, log in via an institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
A.R. Anwar, M. Muthalib, S. Perrey et al., Effective connectivity of cortical sensorimotor networks during finger movement tasks: a simultaneous fNIRS, fMRI, EEG study. Brain Topogr. 29, 645–660 (2016)
F. Babiloni, F. Cincotti, C. Babiloni et al., Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. Neuroimage 24, 118–131 (2004)
L.A. Baccalá, K. Sameshima, Partial directed coherence: a new concept in neural structure determination. Biol. Cybern. (2001). https://doi.org/10.1007/PL00007990
S. Baillet, J.C. Mosher, R.M. Leahy, Electromagnetic brain mapping. IEEE Signal Process. Mag. 18, 14–30 (2001). https://doi.org/10.1109/79.962275
E. Barzegaran, M.G. Knyazeva, Functional connectivity analysis in EEG source space: the choice of method. PLoS ONE 12, e0181105 (2017). https://doi.org/10.1371/journal.pone.0181105
A.M. Bastos, J.-M. Schoffelen, A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2016). https://doi.org/10.3389/fnsys.2015.00175
R.L. Buckner, F.M. Krienen, B.T.T. Yeo, Opportunities and limitations of intrinsic functional connectivity MRI. Nat. Neurosci. 16, 832–837 (2013). https://doi.org/10.1038/nn.3423
E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009). https://doi.org/10.1038/nrn2575
G. Buzsáki, A. Draguhn, Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)
R.T. Canolty, R.T. Knight, The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010). https://doi.org/10.1016/j.tics.2010.09.001
L. Canuet, R. Ishii, R.D. Pascual-Marqui et al., Resting-state EEG source localization and functional connectivity in schizophrenia-like psychosis of epilepsy. PLoS ONE 6. https://doi.org/10.1371/journal.pone.0027863
J.W. Choi, K.S. Cha, J.D. Choi et al., Difficulty-related changes in inter-regional neural synchrony are dissociated between target and non-target processing. Brain Res. 1603, 114–123 (2015). https://doi.org/10.1016/j.brainres.2015.01.031
J.W. Choi, K.M. Jang, K.Y. Jung et al., Reduced theta-band power and phase synchrony during explicit verbal memory tasks in female, non-clinical individuals with schizotypal traits. PLoS ONE 11, 1–18 (2016). https://doi.org/10.1371/journal.pone.0148272
J.W. Choi, D. Ko, G.T. Lee et al., Reduced neural synchrony in patients with restless legs syndrome during a visual oddball task. PLoS ONE 7, 1–9 (2012). https://doi.org/10.1371/journal.pone.0042312
M.X. Cohen, Analyzing Neural Time Series Data: Theory and Practice (The MIT Press, Cambridge, Massachusetts, 2014)
P.W. Diaconia, D. Freedman, Consistency of Bayes estimates for nonparametric regression: normal theory. Bernoulli 4, 411–444 (1998)
K.J. Friston, Functional and effective connectivity: a review. Brain Connect 1, 13–36 (2011). https://doi.org/10.1089/brain.2011.0008
G. Gómez-Herrero, M. Atienza, K. Egiazarian, J.L. Cantero, Measuring directional coupling between EEG sources. Neuroimage 43, 497–508 (2008). https://doi.org/10.1016/j.neuroimage.2008.07.032
C.W.J. Granger, Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37, 424–438 (1969)
M. Hassan, O. Dufor, I. Merlet et al., EEG source connectivity analysis: from dense array recordings to brain networks. PLoS ONE 9, (2014). https://doi.org/10.5281/zenodo.10498
S. Haufe, Towards EEG Source Connectivity Analysis (Berlin Institute of Technology, Berlin, Germany, 2012)
S. Haufe, V.V. Nikulin, K.-R. Müller, G. Nolte, A critical assessment of connectivity measures for EEG data: a simulation study. Neuroimage 64, 120–133 (2013). https://doi.org/10.1016/j.neuroimage.2012.09.036
C.S. Herrmann, M.H.J. Munk, A.K. Engel, Cognitive functions of gamma-band activity: memory match and utilization. Trends Cogn. Sci. 8, 347–355 (2004). https://doi.org/10.1016/j.tics.2004.06.006
A.-S. Hincapié, J. Kujala, J. Mattout et al., The impact of MEG source reconstruction method on source-space connectivity estimation: a comparison between minimum-norm solution and beamforming. Neuroimage 156, 29–42 (2017). https://doi.org/10.1016/j.neuroimage.2017.04.038
J.F. Hipp, D.J. Hawellek, M. Corbetta et al., Large-scale cortical correlation structure of spontaneous oscillatory activity. Nat. Neurosci. (2012). https://doi.org/10.1038/nn.3101
R.M. Hutchison, T. Womelsdorf, E.A. Allen et al., Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013). https://doi.org/10.1016/j.neuroimage.2013.05.079
M.J. Kaminski, K.J. Blinowska, A new method of the description of the information flow in the brain structures. Biol. Cybern. 65, 203–210 (1991)
J. Kayser, C.E. Tenke, Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low-density estimates. Clin. Neurophysiol. 117, 369–380 (2006). https://doi.org/10.1016/j.clinph.2005.08.033
S. Khan, A. Gramfort, N.R. Shetty et al., Local and long-range functional connectivity is reduced in concert in autism spectrum disorders. Proc. Natl. Acad. Sci. U S A. 110, 3107–3112 (2013). https://doi.org/10.1073/pnas.1214533110
J.-P. Lachaux, E. Rodriguez, J. Martinerie, F.J. Varela, Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999)
Y.-Y. Lee, S. Hsieh, Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 9, (2014). https://doi.org/10.1371/journal.pone.0095415
L. Marzetti, C. Del Gratta, G. Nolte, Understanding brain connectivity from EEG data by identifying systems composed of interacting sources. Neuroimage 42, 87–98 (2008). https://doi.org/10.1016/j.neuroimage.2008.04.250
C.M. Michel, M.M. Murray, G. Lantz et al., EEG source imaging. Clin. Neurophysiol. 115, 2195–2222 (2004). https://doi.org/10.1016/j.clinph.2004.06.001
T. Mima, T. Matsuoka, M. Hallett, Functional coupling of human right and left cortical motor areas demonstrated with partial coherence analysis. Neurosci. Lett. 287, 93–96 (2000)
W. Mumtaz, S. Saad, A. Ali et al., A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD). Med. Biol. Eng. Comput. (2017). https://doi.org/10.1007/s11517-017-1685-z
G. Nolte, O. Bai, L. Wheaton et al., Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin. Neurophysiol. 115, 2292–2307 (2004). https://doi.org/10.1016/j.clinph.2004.04.029
G. Nolte, A. Ziehe, V.V. Nikulin et al., Robustly Estimating the Flow Direction of Information in Complex Physical Systems. (2007). https://doi.org/10.1103/physrevlett.100.234101
P.L. Nunez, R. Srinivasan, A.F. Westdorp et al., EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr. Clin. Neurophysiol. 103, 499–515 (1997)
S. Palva, J.M. Palva, The role of local and large-scale neuronal synchronization in human cognition, in Multimodal Oscillation-Based Connectivity Theory, ed. by S. Palva (Springer International Publishing Switzerland, 2016), pp. 51–67
R.D. Pascual-Marqui, Review of methods for solving the EEG inverse problem. Int. J. Bioelectromagn. Print Issue ISSN 1:75–86 (1999)
R.D. Pascual-Marqui, C.M. Michel, D. Lehmann, Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int. J. Psychophysiol. 18, 49–65 (1994)
E. Pereda, R. Quian Quiroga, J. Bhattacharya, Nonlinear multivariate analysis of neurophysiological signals. Prog. Neurobiol. 77, 1–37 (2005). https://doi.org/10.1016/j.pneurobio.2005.10.003
F. Perrin, J. Pernier, O. Bertrand, J.F. Echallier, Spherical splines for scalp potential and current density mapping. Electroencephalogr. Clin. Neurophysiol. 72, 184–187 (1989). https://doi.org/10.1016/0013-4694(89)90180-6
V. Sakkalis, Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41, 1110–1117 (2011). https://doi.org/10.1016/j.compbiomed.2011.06.020
P. Sauseng, W. Klimesch, W.R. Gruber, N. Birbaumer, Cross-frequency phase synchronization: a brain mechanism of memory matching and attention. Neuroimage 40, 308–317 (2008). https://doi.org/10.1016/j.neuroimage.2007.11.032
J.M. Schoffelen, J. Gross, Source connectivity analysis with MEG and EEG. Hum. Brain Mapp. 30, 1857–1865 (2009). https://doi.org/10.1002/hbm.20745
A.K. Seth, A.B. Barrett, L. Barnett, Toolbox granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 35, 3293–3297 (2015). https://doi.org/10.1523/JNEUROSCI.4399-14.2015
C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
M. Siegel, T.H. Donner, A.K. Engel, Spectral fingerprints of large-scale neuronal interactions. Nat. Rev. Neurosci. 13, 121–134 (2012). https://doi.org/10.1038/nrn3137
W. Singer, Synchronization of cortical activity and its putative role in information processing and learning. Annu. Rev. Physiol. 55, 349–374 (1993)
C.J. Stam, W. De Haan, A. Daffertshofer et al., Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132, 213–224 (2009). https://doi.org/10.1093/brain/awn262
C.J. Stam, G. Nolte, A. Daffertshofer, Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28, 1178–1193 (2007). https://doi.org/10.1002/hbm.20346
C.J. Stam, J.C. Reijneveld, Nonlinear biomedical physics graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1, 1–19 (2007). https://doi.org/10.1186/1753-4631-1-3
J. Theilier, S. Eubank, A. Longtin et al., Testing for nonlinearity in time series: the method of surrogate data. Phys. D 58, (1992)
M.P. Van Den Heuvel, H.E. Hulshoff Pol, Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010). https://doi.org/10.1016/j.euroneuro.2010.03.008
F. Varela, J.-P. Lachaux, E. Rodriguez, J. Martinerie, The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001)
F. Vecchio, F. Miraglia, C. Marra et al., Human brain networks in cognitive decline: a graph theoretical analysis of cortical connectivity from EEG data. J. Alzheimer’s Dis. 41, 113–127 (2014). https://doi.org/10.3233/JAD-132087
M. Vinck, R. Oostenveld, M. Van Wingerden et al., An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55, 1548–1565 (2011). https://doi.org/10.1016/j.neuroimage.2011.01.055
B. Voytek, M. D’esposito, N. Crone, R.T. Knight, A method for event-related phase/amplitude coupling. Neuroimage 64, 416–424 (2013). https://doi.org/10.1016/j.neuroimage.2012.09.023
L.M. Ward, Synchronous neural oscillations and cognitive processes. Trends Cogn. Sci. 7, 553–559 (2003). https://doi.org/10.1016/j.tics.2003.10.012
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Choi, J.W., Kim, K.H. (2018). Methods for Functional Connectivity Analysis. In: Im, CH. (eds) Computational EEG Analysis. Biological and Medical Physics, Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-13-0908-3_6
Download citation
DOI: https://doi.org/10.1007/978-981-13-0908-3_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-13-0907-6
Online ISBN: 978-981-13-0908-3
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)
