Advertisement

Analyzing Community Structure Based on Topology Potential over Complex Network System

  • Kanokwan Malang
  • Shuliang Wang
  • Tianru Dai
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 849)

Abstract

Community structure is one of complex network properties which reveals the main organizing proposition in most real-world complex networks. The special interests are groups of vertices within the intense edges or connections that are not only overlapping, but also change over-time. In this paper, we present the overview of structured complex network properties that affect the process of discovering community structure. Topology potential of nodes in complex network is also described. Topology potential is a measurement method to investigate the interaction among community members. From the recent literatures, the community structure discovered by topology potential needs to be improved in term of performance and accuracy in order to obtain more meaningful results.

Keywords

Topology potential Community structure Complex network 

Notes

Acknowledgments

This work was supported by National Key Research and Development Plan of China (2016YFB0502604, 2016YFC0803000), National Natural Science Fund of China (61472039), and Frontier and Interdisciplinary Innovation Program of Beijing Institute of Technology (2016CX11006), International Scientific and Technological Cooperation and Academic Exchange Program of Beijing Institute of Technology (GZ2016085103).

References

  1. 1.
    Han, Y., Li, D., Wang, T.: Identifying different community members in complex networks based on topology potential. Front. Comput. Sci. China 5(1), 87–99 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Maslov, S., Sneppen, K., Zaliznyak, A.: Complex network: detection of topological patterns in complex networks: correlation pro le of the internet. Phys. A 333, 529–540 (2004)CrossRefGoogle Scholar
  3. 3.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamic. Phys. Rep. 424(4), 175--308 (2006). Bracamonte, T.sMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Zhong, M., Zhong, C.: TopSeer: a novel scholar search engine based on community detection in citation network. In: Proceedings of 11th Joint International Conference on Information Sciences, Atlantis Press (2008)Google Scholar
  5. 5.
    Hogan, A., Poblete, B.: Applying community detection methods to cluster tags in multimedia search results. In: 2016 IEEE International Symposium Multimedia (ISM), pp. 467–474. IEEE Press, New York (2016)Google Scholar
  6. 6.
    Chhun, S., Malang, K., Cherifi, C., Moalla, N., Ouzrout, Y.: A web service composition framework based on centrality and community structure. In: Proceedings of 11th International Conference Signal-Image Technology & Internet-Based Systems (SITIS), pp. 489–496. IEEE Press, New York (2015)Google Scholar
  7. 7.
    Cherifi, C., Santucci, J.F.: Community structure in interaction web service networks. Int. J. Web Based Commun. 9(3), 392–410 (2013)CrossRefGoogle Scholar
  8. 8.
    Hajibagheri, A., Alvari, H., Hamzeh, A., Hashemi, S.: Community detection in social networks using information diffusion. In: Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), pp. 702–703. IEEE Computer Society (2012)Google Scholar
  9. 9.
    Varamesh, A., Akbari, M.K., Fereiduni, M., Sharifian, S., Bagheri, A.: Distributed clique percolation based community detection on social networks using MapReduce. In: 2013 5th Conference Information and Knowledge Technology (IKT), pp. 478–483. IEEE Press, New York (2013)Google Scholar
  10. 10.
    Han, Y., Hu, J., Li, D., Zhang, S.: A novel measurement of structure properties in complex networks. In: Zhou, J. (ed.) Complex 2009. LNICST, vol. 5, pp. 1292–1297. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02469-6_10CrossRefGoogle Scholar
  11. 11.
    Wiedermann, M., Donges, J.F., Kurths, J., Donner, R.V.: Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes. Phys. Rev. E 93(4), 042308 (2016)Google Scholar
  12. 12.
    Kim, D.H., Rodgers, G.J., Kahng, B., Kim, D.: Modelling hierarchical and modular complex networks: division and independence. Phys. A 351(2), 671–679 (2005)CrossRefGoogle Scholar
  13. 13.
    Capocci, A., Servedio, V.D.P., Colaiori, F., Buriol, L.S., Donato, D., Leonardi, S., Caldarelli, G.: Preferential attachment in the growth of social networks: the internet encyclopedia wikipedia. Am. Phys. Soc. 74(3), 036116 (2006)Google Scholar
  14. 14.
    Masucci, A.P., Kalampokis, A., Eguíluz, V.M., Hernández-García, E.: Wikipedia information flow analysis reveals the scale-free architecture of the semantic space. PLoS ONE 6(2), e17333 (2011)CrossRefGoogle Scholar
  15. 15.
    Schönhofen, P.: Identifying document topics using the wikipedia category network. Web Intell. Agent Syst. Int. J. 7(2), 195–207 (2009)Google Scholar
  16. 16.
    Chopade, P., Zhan, J.: Structural and functional analytics for community detection in large-scale complex networks. J. Big Data 2(1), 11 (2015)Google Scholar
  17. 17.
    Fortunato, S., Lancichinetti, A.: Community detection algorithms: a comparative analysis: invited presentation, extended abstract. In: Proceedings of the Fourth International ICST Conference on Performance Evaluation Methodologies and Tools, p. 27 (2009)Google Scholar
  18. 18.
    Newman, M.E.: Detecting community structure in networks. Eur. Phys. J. B-Condens Matter Complex Syst. 38(2), 321—330 (2004)Google Scholar
  19. 19.
    Estrada, E., Higham, D.J., Hatano, N.: Communicability betweenness in complex networks. Phys. A 388(5), 764–774 (2009)CrossRefGoogle Scholar
  20. 20.
    Xiao, L., Wang, S., Li, J.: Discovering community membership in biological networks with node topology potential. In: 2012 IEEE International Conference Granular Computing (GrC), pp. 541–546. IEEE Press, New York (2012)Google Scholar
  21. 21.
    Li, D., Wang, S., Li, D.: Spatial Data Mining: Theory and Application. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-48538-5CrossRefGoogle Scholar
  22. 22.
    Seary, A.J., Richards, W.D.: Spectral methods for analyzing and visualizing networks: an introduction. pp. 209–228 (2003)Google Scholar
  23. 23.
    Ma, X., Gao, L.: Non-traditional spectral clustering algorithms for the detection of community structure in complex networks: a comparative analysis. J. Statis. Mech. Theor. Exp. 2011(05), P05012 (2011)CrossRefGoogle Scholar
  24. 24.
    Rahman, M.S., Ngom, A.: A fast agglomerative community detection method for protein complex discovery in protein interaction networks. In: Ngom, A., Formenti, E., Hao, J.-K., Zhao, X.-M., van Laarhoven, T. (eds.) PRIB 2013. LNCS, vol. 7986, pp. 1–12. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39159-0_1CrossRefGoogle Scholar
  25. 25.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Yolum, p., Güngör, T., Gürgen, F., Özturan, C. (eds.) ISCIS 2005. LNCS, vol. 3733, pp. 284–293. Springer, Heidelberg (2005).  https://doi.org/10.1007/11569596_31CrossRefGoogle Scholar
  26. 26.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)CrossRefGoogle Scholar
  27. 27.
    Newman, M.E.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004)Google Scholar
  28. 28.
    Jianpei, Z., Hongbo, L., Jing, Y., Jinbo, B., Yan, C.: Network soft partition based on topological potential. In: 2011 6th International ICST Conference Communications and Networking in China (CHINACOM), pp. 725–729. IEEE Press, New York (2011)Google Scholar
  29. 29.
    Xuhui, W.: Lossless network compression based on topology potential community discovery. J. Theor. Appl. Inf. Technol. 50, 7 (2005)Google Scholar
  30. 30.
    Wang, Z., Chen, Z., Zhao, Y., Nui, Q.: Topology potential: a novel local maximum potential point search algorithm for topology potential field. Int. J. Hybrid Inf. Technol. 7(2), 1–8 (2014)CrossRefGoogle Scholar
  31. 31.
    Ding, X., Chen, Z.W.S., Huang, Y.: Community-based collaborative filtering recommendation algorithm. Int. J. Hybrid Inf. Technol. 8(2), 149–158 (2015)CrossRefGoogle Scholar
  32. 32.
    Wang, Z., Chen, Z., Zhao, Y., Chen, S.: A community detection algorithm based on topology potential and spectral clustering. Sci. World J. 2014, 1–9 (2014)Google Scholar
  33. 33.
    Nielsen, F.Å.: Wikipedia research and tools: Review and comments (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Software EngineeringBeijing Institute of TechnologyBeijingPeople’s Republic of China

Personalised recommendations