Advertisement

Algorithm for Calculating the Fractal Dimension of Internet AS-Level Topology

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 849)

Abstract

A box-covering algorithm to calculate the fractal dimension of Internet topology at AS-level was introduced. The algorithm first selects some nodes that have big degree and put them into different boxes, and then uses the node as seed in each box to cover the network. The purpose is to ensure that the boxes to cover the network are as little as possible. By analyzing a large number of the actual measurement data of AS-level topology, we found the relationship between the number of the nodes that were first selected as seeds and the size of the network. The number of the boxes to cover the network obtained by this algorithm is very close to the minimum number of boxes needed to cover the entire network. The results show that the algorithm can get the near-optimal solutions to cover the Internet network at AS-level without an exhaustive search, and thus effectively saves the time for calculating the fractal dimension of Internet topology at AS-level.

Keywords

Complex network Box-Covering Fractal dimension AS-Level topology 

References

  1. 1.
    Zhang, J., Zhao, H., Yang, B., Sun, H.L.: Fractal characteristics of internet router-level topology. J. Northeastern Univ. 32(3), 372–375 (2011)Google Scholar
  2. 2.
    Caldarelli, G., Marchetti, R., Pietronero, L.: The fractal properties of Internet. Europhys. Lett. 52(4), 386–391 (2000). http://stacks.iop.org/0295-5075/52/i=4/a=386
  3. 3.
    Zhang, J., Zhao, H., Yang, B.: Fractals on IPv6 network topology. Telkomnika 11(2), 577–582 (2013)Google Scholar
  4. 4.
    Mi, X., Zhu, J., Zhao, H.: Analysis of fractal characteristic of Internet router and IPv6 level topology. J. Northeastern Univ. 35(1), 43–46 + 55 (2014)Google Scholar
  5. 5.
    Zhang, W.B., Zhao, H., Sun, P.G., Xu, Y., Zhang, X.: Research on Internet topology evolution and the fractal of average degree of nodes. Acta Electronica Sin. 34(8), 1438–1445 (2006)Google Scholar
  6. 6.
    Kitsak, M., Havlin, S., Paul, G., Riccaboni, M., Pammolli, F., Stanley, H.E.: Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks. Phys. Rev. E 75(5), 056115 (2007).  https://doi.org/10.1103/physreve.75.056115
  7. 7.
    Song, C.M., Havlin, S., Makse, H.A.: Self-similarity of complex network. Nature 433(7024), 392–395 (2005).  https://doi.org/10.1038/nature03248
  8. 8.
    Feder, J.: Fractals. Plenum Press, New York (1988)Google Scholar
  9. 9.
    Viquez, S., Rodriguez-Lugo, V., Vazquez-Polo, G., Castano, V.M.: Measuring two-dimensional fractal patterns: the role of the definition of dimension. Comput. Mater. Sci. 4(2), 172–180 (1995).  https://doi.org/10.1016/0927-0256(95)00020-q
  10. 10.
    Feeny, B.F.: Fast multifractal analysis by recursive box covering. Int. J. Bifurcation Chaos 10(9), 2277–2287 (2000).  https://doi.org/10.1142/s0218127400001420
  11. 11.
    Schneider, C.M., Kesselring, T.A., Andrade, J.S., Herrmann, H.J.: Box-covering algorithm for fractal dimension of complex networks. Phys. Rev. E 86(1), 016707 (2012).  https://doi.org/10.1103/physreve.86.016707
  12. 12.
    Kim, J.S., Goh, K.-I., Kahng, B., Kim, D.: A box-covering algorithm for fractal scaling in scale-free networks. Chaos 17(2), 26116/1–6 (2007).  https://doi.org/10.1063/1.2737827
  13. 13.
    Zhou, W.X., Jiang, Z.Q., Sornette, D.: Exploring self-similarity of complex cellular networks: the edge-covering method with simulated annealing and log-periodic sampling. Phys. A 375(2), 741–752 (2007).  https://doi.org/10.1016/j.physa.2006.10.025
  14. 14.
    Song, C.M., Gallos, L.K., Havlin, S., Makse, H.A.: How to calculate the fractal dimension of a complex network: the box covering algorithm. J. Stat. Mech., 03006 (2007).  https://doi.org/10.1088/1742-5468/2007/03/p03006
  15. 15.
    Gao, L., Hu, Y.Q., Di, Z.R.: Accuracy of the ball-covering approach for fractal dimensions of complex networks and a rank-driven algorithm. Phys. Rev. E 78(4), 046109 (2008).  https://doi.org/10.1103/physreve.78.046109
  16. 16.
    Zhou, Y.W., Liu, J.L., Yu, Z.G., Zhao, Z.Q., Anh, V.: Fractal and complex network analyses of protein molecular dynamics. Phys. A 416(12), 21–32 (2014).  https://doi.org/10.1016/j.physa.2014.08.047
  17. 17.
    Sun, Y.Y., Zhao, Y.J.: Overlapping box covering method for the fractal dimension of complex networks. Phys. Rev. E 89(4), 042809 (2014).  https://doi.org/10.1103/physreve.89.042809
  18. 18.
    Kuang, L., Zhao, Z.Y., Wang, F., Li, Y.X., Yu, F., Li, Z.J.: A differential evolution box-covering algorithm for fractal dimension on complex networks. In: Proceedings of 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 06–11 July, 2014, pp. 693–699 (2014).  https://doi.org/10.1109/cec.2014.6900383
  19. 19.
    Zhang, H.X., Hu, Y., Lan, X., Mahadevan, S., Deng, Y.: Fuzzy fractal dimension of complex networks. Appl. Soft Comput. J. 25, 514–518 (2014).  https://doi.org/10.1016/j.asoc.2014.08.019
  20. 20.
    Shanker, O.: Algorithms for fractal dimension calculation. Mod. Phys. Lett. B 22(7), 459–466 (2008)Google Scholar
  21. 21.
    Tao, S.H., Zhang, Z.L., Tian, S.L.: Properties of self-similarity networks. J. Comput. 5(10), 1582–1589 (2010).  https://doi.org/10.4304/jcp.5.10.1582-1589
  22. 22.
    Kim, J.S., Goh, K.I., Kahng, B., Kim, D.: Fractality and self-similarity in scale-free networks. New J. Phys. 9(6), 177 (2007).  https://doi.org/10.1088/1367-2630/9/6/177
  23. 23.
    Yao, C.Z., Yang, J.M.: Improved box dimension calculation algorithm for fractality of complex networks. Comput. Eng. Appl. 46(8), 5–7 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.School of Materials Science and EngineeringNortheastern UniversityShenyangChina

Personalised recommendations