Advertisement

COKES: Continuous Top-k Keyword Search in Relational Databases

  • Yanwei Xu
  • Yicheng Yang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 849)

Abstract

Keyword search in relational databases has been widely studied in recent years. Most of existing methods focus on answering snapshot keyword queries in static databases. However, in practice, relational databases are always being updated continually. Reevaluating a keyword query using existing methods after the database is updated is prohibitively expensive. In this paper we describe the COKES system, which keeps the set of answers whose upper bounds of future relevance scores are larger than a threshold for top-k answers maintenance. Experimental results show that the proposed method is efficient in answering continuous top-k keyword queries in relational databases.

Keywords

Keyword search Continuous queries Answers maintenance Relational databases 

Notes

Acknowledgments

This research was partly supported by the Natural Science Foundation of Shanghai under grant No.~14ZR1427700 and the Shanghai Engineering Research Center for Broadband Technologies & Applications (14DZ2280100).

References

  1. 1.
    Aditya, B., Bhalotia, G., Chakrabarti, S., Hulgeri, A., Nakhe, C., Parag, P.: BANKS: browsing and keyword searching in relational databases. In: VLDB, pp. 1083–1086 (2002)CrossRefGoogle Scholar
  2. 2.
    Li, G., Zhou, X., Feng, J., Wang, J.: Progressive keyword search in relational databases. In: ICDE, pp. 1183–1186 (2009)Google Scholar
  3. 3.
    Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., Karambelkar, H.: Bidirectional expansion for keyword search on graph databases. In: VLDB, pp. 505–516 (2005)Google Scholar
  4. 4.
    He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In: ACM SIGMOD, New York, NY, USA, pp. 305–316. ACM (2007)Google Scholar
  5. 5.
    Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: EASE: an effective 3-in-1 keyword search method for unstructured, semi-structured and structured data. In: ACM SIGMOD, pp. 903–914 (2008)Google Scholar
  6. 6.
    Agrawal, S., Chaudhuri, S., Das, G.: DBXplorer: a system for keyword-based search over relational databases. In: ICDE, pp. 5–16 (2002)Google Scholar
  7. 7.
    Hristidisand, V., Papakonstantinou, Y.: DISCOVER: keyword search in relational databases. In: VLDB, pp. 670–681 (2002)CrossRefGoogle Scholar
  8. 8.
    Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient IR-style keyword search over relational databases. In: VLDB, pp. 850–861 (2003)CrossRefGoogle Scholar
  9. 9.
    Liu, F., Yu, C., Meng, W., Chowdhury, A.: Effective keyword search in relational databases. In: ACM SIGMOD, pp. 563–574 (2006)Google Scholar
  10. 10.
    Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: top-k keyword query in relational databases. In: ACM SIGMOD, pp. 115–126 (2007)Google Scholar
  11. 11.
    Yu, J.X., Qin, L., Chang, L.: Keyword search in relational databases: a survey. Bull. IEEE Tech. Committee Data Eng. 33(10), 67–78 (2010)Google Scholar
  12. 12.
    Luo, Y.: SPARK: A Keyword Search System on Relational Databases, Ph.D. thesis, The University of New South Wales (2009)Google Scholar
  13. 13.
    Xu, Y., Ishikawa, Y., Guan, J.: Efficient continuous top-k keyword search in relational databases. In: Chen, L., Tang, C., Yang, J., Gao, Y. (eds.) WAIM 2010. LNCS, vol. 6184, pp. 755–767. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14246-8_71CrossRefGoogle Scholar
  14. 14.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Burns, A.: Preemptive priority-based scheduling: an appropriate engineering approach. In: Advances in real-time systems, pp. 225–248 (1995)Google Scholar
  16. 16.
    Zeng, Z., Bao, Z., Ling, T.W., Lee, M.L.: iSearch: an interpretation based framework for keyword search in relational databases. In: KEYS, pp. 3–10 (2012)Google Scholar
  17. 17.
    Xu, Y., Guan, J., Ishikawa, Y.: Scalable top-k keyword search in relational databases. In: Lee, S.-g., Peng, Z., Zhou, X., Moon, Y.-S., Unland, R., Yoo, J. (eds.) DASFAA 2012. LNCS, vol. 7239, pp. 65–80. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29035-0_5CrossRefGoogle Scholar
  18. 18.
    Xu, Y., Guan, J., Li, F., Zhou, S.: Scalable continual top-k keyword search in relational databases. Data Knowl. Eng. 86, 206–223 (2013)CrossRefGoogle Scholar
  19. 19.
    de Oliveira, P., da Silva, A.S., de Moura, E.S.: Ranking candidate networks of relations to improve keyword search over relational databases. In: 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, 13–17 April 2015, pp. 399–410 (2015)Google Scholar
  20. 20.
    Zeng, Z., Bao, Z., Lee, M., Ling, T.W.: Towards an interactive keyword search over relational databases. In: Proceedings of the 24th International Conference on World Wide Web Companion, WWW 2015, Florence, Italy, 18–22 May 2015, Companion Volume, pp. 259–262 (2015)Google Scholar
  21. 21.
    Kargar, M., An, A., Cercone, N., Godfrey, P., Szlichta, J., Yu, X.: Meaningful keyword search in relational databases with large and complex schema. In: 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South Korea, 13–17 April 2015, pp. 411–422 (2015)Google Scholar
  22. 22.
    Zhou, J., Liu, Y., Yu, Z.: Improving the effectiveness of keyword search in databases using query logs. In: Proceedings of 16th International Conference on Web-Age Information Management, WAIM 2015, Qingdao, China, 8–10 June 2015, pp. 193–206 (2015)CrossRefGoogle Scholar
  23. 23.
    Ling, T.W., Le, T.N., Zeng, Z.: Towards an intelligent keyword search over XML and relational databases. In: International Conference on Big Data and Smart Computing, BIGCOMP 2014, Bangkok, Thailand, 15–17 January 2014, pp. 1–6 (2014)Google Scholar
  24. 24.
    Torlone, R.: Towards a new foundation for keyword search in relational databases. In: Proceedings of the 8th Alberto Mendelzon Workshop on Foundations of Data Management, Cartagena de Indias, Colombia, 4–6 June 2014 (2014)Google Scholar
  25. 25.
    Lin, Z., Li, Y., Lai, Y.: Improve the effectiveness of keyword search over relational database by node-temperature-based ant colony optimization. In: 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015, Zhangjiajie, China, 15–17 August 2015, pp. 1209–1214 (2015)Google Scholar
  26. 26.
    Ling, T.W., Zeng, Z., Le, T.N., Lee, M.: Ora-semantics based keyword search in XML and relational databases. In: 32nd IEEE International Conference on Data Engineering Workshops, ICDE Workshops 2016, Helsinki, Finland, 16–20 May 2016, pp. 157–160 (2016)Google Scholar
  27. 27.
    Yu, Z., Yu, X., Chen, Y., Ma, K.: Distributed top-k keyword search over very large databases with map reduce. In: 2016 IEEE International Congress on Big Data, San Francisco, CA, USA, June 27–July 2 2016, pp. 349–352 (2016)Google Scholar
  28. 28.
    Qin, L., Yu, J.X., Chang, L., Tao, Y.: Querying communities in relational databases. In: ICDE, pp. 724–735 (2009)Google Scholar
  29. 29.
    Jaehui, P., Sang-goo, L.: Keyword search in relational databases. Knowl. Inf. Syst. 26(2), 175–193 (2011)CrossRefGoogle Scholar
  30. 30.
    Markowetz, A., Yang, Y., Papadias, D.: Keyword search on relational data streams. In: ACM SIGMOD, pp. 605–616 (2007)Google Scholar
  31. 31.
    Qin, L., Yu, J.X., Chang, L., Tao, Y.: Scalable keyword search on large data streams. In: ICDE, pp. 1199–1202 (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Shanghai Engineering Research Center for Broadband Technologies and ApplicationsShanghaiChina

Personalised recommendations