Advertisement

Digging More in Neural World: An Efficient Approach for Hyperspectral Image Classification Using Convolutional Neural Network

  • Adnan Iltaf
  • Matee Ullah
  • Junling Shen
  • Zebin Wu
  • Chuancai Liu
  • Zeeshan Ahmad
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 849)

Abstract

Classification of hyperspectral images (HSI) can benefit from deep learning models with deep architecture in remote sensing. In this letter, a novel method based on Convolutional Neural Network (CNN) is proposed for the classification of hyperspectral images. Due to using more spatio-spectral features for the classification of hyperspectral images, the proposed method outperforms the existing state-of-the-art classification techniques. Our proposed method first reduces the dimension of hyperspectral images using Principle component analysis (PCA). The spatial and spectral features are then exploited by a fixed size convolutional filter to generate the combine spatio-spectral feature maps. Finally, these feature maps are fed into a Multi-Layer Perceptron (MLP) classifier that predicts the class of the pixel vector. To validate the effectiveness of our proposed method, computer simulations are conducted using three datasets namely Indian Pines, Salinas and Pavia University and comparisons with existing techniques are made.

Keywords

CNN Hyperspectral classification PCA Multi-Layer Perceptron (MLP) Remote sensing 

Notes

Acknowledgments

This work is sponsored by the National Natural Science Foundation of China under Grant No. 61373063 and 61373062; the project of Ministry of Industry and Information Technology of China (Grant No. E0310/1112/02-1).

References

  1. 1.
    Falco, N., Bruzzone, L., Benediktsson, J.A.: A comparative study of different ICA algorithms for hyperspectral image analysis. In: 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4 (2013)Google Scholar
  2. 2.
    Zhao, L.Y., Zou, D., Gao, G.: Subsampling based neighborhood preserving embedding for image classification. In: Proceedings - 2013 9th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, IIH-MSP 2013, pp. 358–360 (2013)Google Scholar
  3. 3.
    Yuan, H., Tang, Y.Y., Lu, Y., Yang, L., Luo, H.: Spectral-spatial classification of hyperspectral image based on discriminant analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7, 2035–2043 (2014)CrossRefGoogle Scholar
  4. 4.
    Gangodagamage, C., Foufoula-Georgiou, E., Brumby, S.P., Chartrand, R., Koltunov, A., Liu, D., Cai, M., Ustin, S.L.: Wavelet-compressed representation of landscapes for hydrologic and geomorphologic applications. IEEE Geosci. Remote Sens. Lett. 13, 480–484 (2016)CrossRefGoogle Scholar
  5. 5.
    Yu, H., Gao, L., Liao, W., Zhang, B., Pizurica, A., Philips, W.: Multiscale superpixel-level subspace-based support vector machines for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 14, 2142–2146 (2017)CrossRefGoogle Scholar
  6. 6.
    Chen, Y., Zhao, X., Jia, X.: Spectral-Spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 2381–2392 (2015)CrossRefGoogle Scholar
  7. 7.
    Salakhutdinov, R., Hinton, G.: Deep boltzmann machines. In: AISTATS, pp. 448–455 (2009)Google Scholar
  8. 8.
    Vincent, P., Larochelle, H.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion Pierre-Antoine manzagol. J. Mach. Learn. Res. 11, 3371–3408 (2010)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Yu, S., Jia, S., Xu, C.: Convolutional neural networks for hyperspectral image classification. Neurocomputing 219, 88–98 (2017)CrossRefGoogle Scholar
  10. 10.
    Lin, Z., Chen, Y., Zhao, X., Wang, G.: Spectral-spatial classification of hyperspectral image using autoencoders. In: 2013 9th International Conference Information, Communication Signal Process, pp. 1–5 (2013)Google Scholar
  11. 11.
    Lee, H., Kwon, H.: Going deeper with contextual CNN for hyperspectral image classification. IEEE Trans. Image Process. 26, 4843–4855 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Jablonski, J.A.: Reconstruction error and principal component based anomaly detection in hyperspectral imagery. Master thesis, Air Force Institute of Technology, USA (2014)Google Scholar
  13. 13.
    Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on International Conference on Machine Learning, pp. 448–456 (2015)Google Scholar
  14. 14.
  15. 15.
  16. 16.
    Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., Zheng, X., Brain, G.: TensorFlow: a system for large-scale machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2016), pp. 265–284 (2016)Google Scholar
  17. 17.
    Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H.: Deep convolutional neural networks for hyperspectral image classification. J. Sens. 2015, 1–12 (2015)CrossRefGoogle Scholar
  18. 18.
    Zhong, P., Gong, Z., Li, S., Schonlieb, C.-B.: Learning to diversify deep belief networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55, 3516–3530 (2017)CrossRefGoogle Scholar
  19. 19.
    Brownlee J.: Deep Learning with Python: Develop Deep Learning Models on Theano and TensorFlow Using Keras, 1.7th edn. Machine Learning Mastery, Melbourne (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Adnan Iltaf
    • 1
  • Matee Ullah
    • 1
  • Junling Shen
    • 1
  • Zebin Wu
    • 1
  • Chuancai Liu
    • 1
  • Zeeshan Ahmad
    • 2
  1. 1.School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
  2. 2.School of Electronic and Optical EngineeringNanjing University of Science and TechnologyNanjingChina

Personalised recommendations